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Abstract

Great efforts have been devoted to causal discovery from observational data, and
it is well known that introducing some background knowledge attained from
experiments or human expertise can be very helpful. However, it remains unknown
that what causal relations are identifiable given background knowledge in the
presence of latent confounders. In this paper, we solve the problem with sound
and complete orientation rules when the background knowledge is given in a local
form. Furthermore, based on the solution to the problem, this paper proposes a
general active learning framework for causal discovery in the presence of latent
confounders, with its effectiveness and efficiency validated by experiments.

1 Introduction

Causality has attracted tremendous attention in recent years, for its application on explainability [1],
fairness [2, 3, 4], decision [5, 6, 7, 8, 9], and so on. In Pearl’s causality framework [10], one important
problem is causal discovery, i.e., learning a causal graph to denote the causal relations among all
the variables [11, 12, 13, 14, 15, 16]. Generally, we cannot identify all the causal relations from
observational data, unless we make some additional functional assumptions [17, 18, 19] or exploit
the abundant information in multiple or dynamic environments [20, 21].

In light of the uncertainty of the causal relations, a common practice to reveal them is introducing
background knowledge, which is called BK for short. BK can be attained from experiments or human
expertise. When experiments are available, we can collect interventional data to learn additional
causal relations [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. And if in the causal discovery task, there are
some variables familiar to humans, it is also possible that the human expertise can be helpful [32].
For example, if we study the causal relations among some variables including sales and prices, the
causal relations such as price causes sales can be obtained directly according to human expertise.

When BK is available in addition to observational data, a fundamental problem is: what causal
relations are identifiable in the presence of latent variables? This problem is fundamental for its
implication on the maximally identifiable causal knowledge with the observational data and BK.
Its difficulty results from the fact that, in addition to the BK itself, some other causal relations can
also be learned when incorporating BK. For example, they can be identified on the basis of some
restrictions, such as the causal relations are acyclic. It is quite challenging to find the complete
characterization for such additional causal knowledge in the presence of latent variables, and the
complete characterization is necessarily accompanied with theoretical guarantee for the existence
of causal graphs consistent to the observational data and local BK that have exactly different causal
relations for the unidentifiable ones. Unfortunately, the problem remains open.

In this paper, we solve the problem with sound and complete orientation rules when the background
knowledge is given in a local form. In the presence of latent variables, a partial ancestral graph (PAG)
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can be learned by FCI algorithm from observational data [33, 34, 35]. PAG can imply the existence
of causal relation between any two variables but not necessarily imply the causal direction. We say
BK is local, if when the BK contains the causal information with respect to a variable X , for each
variable adjacent to X in the PAG, the BK implies whether X causes it or not. The local BK is
common in real tasks no matter it is from experiments or human expertise. For example, when we
make experiments and collect the data under intervention on X , for each variable V that has a causal
relation with X , the interventional data can tell whether X causes V ; and businessman often has
enough domain knowledge about price, thus they usually know whether price causes other variables
or not, such as price causes sales and number of customers, and price is not caused by stocks. Given
a PAG and local BK, we propose a set of orientation rules to determine some causal directions in the
PAG. We prove that the rules are sound and complete, which state that all the causal relations that
are identifiable given available information are exactly those determined by the proposed rules, thus
closing the problem given local BK.

The establishment of orientation rules compatible with local BK makes causal discovery by inter-
ventions possible in the presence of latent variables. We propose the first general active learning
framework for causal discovery, with the target of identifying a maximal ancestral graph (MAG),
which implies the causal relations when there are latent variables. Considering that intervention is
expensive in reality, we hope to achieve the target with as few interventions as possible. Hence we
present a baseline maximal entropy criterion, equipped with Metropolis-Hastings sampling, to select
the intervention variable such that we can learn more causal relations by each intervention. Our
contributions in this paper are twofold:

(1) We show what causal relations are identifiable given local background knowledge in the
presence of latent confounders with sound and complete orientation rules.

(2) We give the first active learning framework for causal discovery that is applicable when
latent variables exist, where maximal entropy criterion equipped with Metropolis-Hastings
sampling is introduced to select intervention variables.

Related works. In the literature, Meek [36] established sound and complete rules, generally called
Meek rules, for causal identification given BK under the causal sufficiency assumption. The as-
sumption requires that there are no latent variables that cause more than one observed variable
simultaneously. However, causal sufficiency is untestable in practice. When we apply causality in
subjects such as biology, sociology, and economics, it is quite often that there are latent variables.
For example, the macroeconomic policy influences purchase price, the population of customers, and
advertising cost, but it is hard to evaluate it, thereby a latent confounder. Andrews et al. [37] showed
that FCI algorithm is complete given tiered BK, where all variables are partitioned into disjoint sets
with explicit causal order. While in many cases, e.g., when BK is revealed by interventions, BK is
not tiered. And Jaber et al. [28] investigated the complete algorithm to learn a graph when there are
additional interventional distribution, while such knowledge is not needed in our paper.

2 Preliminary

A graph G = (V,E) consists of a set of vertices V = {V1, · · · , Vp} and a set of edges E. For any
subset V′ ⊆ V, the subgraph induced by V′ is GV′ = (V′,EV′), where EV′ is the set of edges in
E whose both endpoints are in V′. For a graph G, V(G) denotes the set of vertices in G. G is a
complete graph if there is an edge between any two vertices. The subgraph induced by an empty set is
also a complete graph. G[−V′] denotes the subgraph GV\V′ induced by V\V′. Usually, bold letter
(e.g., V) denotes a set of vertices and normal letter (e.g., V ) denotes a vertex. A graph is chordal
if any cycle of length four or more has a chord, which is an edge joining two vertices that are not
consecutive in the cycle. If G = (V,E) is chordal, the subgraph of G induced by V′ ⊆ V is chordal.

A graph G is mixed if the edges in G are either directed → or bi-directed ↔. The two ends of
an edge are called marks and have two types arrowhead or tail. A graph is a partial mixed graph
(PMG) if it contains directed edges, bi-directed edges, and edges with circles (◦). The circle implies
that the mark here could be either arrowhead or tail but is indefinite. Vi is adjacent to Vj in G
if there is an edge between Vi and Vj . A path in a graph G is a sequence of distinct vertices
〈V0, · · · , Vn〉 such that for 0 ≤ i ≤ n − 1, Vi and Vi+1 are adjacent in G. An edge in the form
of Vi ◦−◦ Vj is a circle edge. The circle component in G is the subgraph consisting of all the
◦−◦ edges in G. Denote the set of vertices adjacent to Vi in G by Adj(Vi, G). A vertex Vi is a
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parent of a vertex Vj if there is Vi → Vj . A directed path from Vi to Vj is a path comprised of
directed edges pointing to the direction of Vj . A possible directed path from Vi to Vj is a path
without an arrowhead at the mark near Vi on every edge in the path. Vi is an ancestor/possible
ancestor of Vj if there is a directed path/possible directed path from Vi to Vj or Vi = Vj . Vi is a
descendant/possible descendant of Vj if there is a directed path/possible directed path from Vj to Vi
or Vj = Vi. Denote the set of parent/ancestor/possible ancestor/descendant/possible descendant of
Vi in G by Pa(Vi, G)/Anc(Vi, G)/PossAn(Vi, G)/De(Vi, G)/PossDe(Vi, G). If Vi ∈ Anc(Vj , G) and
Vi ← Vj /Vi ↔ Vj , it forms a directed cycle/almost directed cycle. ∗ is a wildcard that denotes any of
the marks (arrowhead, tail, and circle). We make a convention that when an edge is in the form of
◦−∗, the ∗ here cannot be a tail since in this case the circle can be replaced by an arrowhead due to the
assumption of no selection bias.

A non-endpoint vertex Vi is a collider on a path if the path contains ∗→ Vi ←∗. A path p from Vi
to Vj is a collider path if Vi and Vj are adjacent or all the passing vertices are colliders on p. p is a
minimal path if there are no edges between any two non-consecutive vertices. A path p from Vi to Vj
is a minimal collider path if p is a collider path and there is not a proper subset V′ of the vertices in p
such that there is a collider path from Vi to Vj comprised of V′. A triple 〈Vi, Vj , Vk〉 on a path is
unshielded if Vi and Vk are not adjacent. p is an uncovered path if every consecutive triple on p is
unshielded. A path p is a minimal possible directed path if p is minimal and possible directed.

A mixed graph is an ancestral graph if there is no directed or almost directed cycle (since we assume
no selection bias, we do not consider undirected edges in this paper). An ancestral graph is a maximal
ancestral graph (MAG, denoted byM) if it is maximal, i.e., for any two non-adjacent vertices, there
is a set of vertices that m-separates them [33]. A path p between X and Y in an ancestral graph G is
an inducing path if every non-endpoint vertex on p is a collider and meanwhile an ancestor of either
X or Y . An ancestral graph is maximal if and only if there is no inducing path between any two
non-adjacent vertices [33].

In an MAG, a path p = 〈X, · · · ,W, V, Y 〉 is a discriminating path for V if (1) X and Y are not
adjacent, and (2) every vertex between X and V on the path is a collider on p and a parent of Y .
Two MAGs are Markov equivalent if they share the same m-separations. A class comprised of all
Markov equivalent MAGs is a Markov equivalence class (MEC). We use a partial ancestral graph
(PAG, denoted by P) to denote an MEC, where a tail/arrowhead occurs if the corresponding mark is
tail/arrowhead for all Markov equivalent MAGs, and a circle occurs otherwise.

For a PMG M that is obtained from a PAG P by orienting some circles to either arrowheads or tails,
an MAGM is consistent to the PMG M if (1) the non-circle marks in M are also inM, and (2)M
is in the MEC represented by P . Sometimes we will omit the PAG P and just directly say a PMG M
(obtained from the PAG P) since in this paper we study the rules to incorporate local BK to a PAG.
We say an MAGM is consistent to the BK ifM is with the orientations dictated by the BK.

3 Sound and Complete Rules

In this section, we present the sound and complete orientation rules to orient a PAG P with local
background knowledge (BK), where P is learned by observational data [11, 35] and V(P) =
{V1, V2, · · · , Vd}. The local BK regarding X means that the BK directly implies and only directly
implies all the true marks at X , denoted by BK(X). We assume the absence of selection bias and
that the BK is correct. The correctness indicates that there exists an MAG consistent to P and the BK.
Without loss of generality, we suppose the local BK is regarding V1, V2, · · · , Vk, 1 ≤ k ≤ d. That is,
for any vertex X ∈ V1, V2, · · · , Vk, all the marks at X are known according to the local BK; and for
any vertex X ∈ Vk+1, · · · , Vd, the local BK does not directly imply any marks at X .

First, we show the orientation rules to incorporate local BK. They follow the rules of Zhang [35] for
learning a PAG but with one replacement and one addition. Due to the page limit, we do not list them
here but the replaced and additional ones. See Appendix A for the rules proposed by Zhang [35].

R′4: If 〈K, · · · , A,B,R〉 is a discriminating path between K and R for B, and B ◦−∗ R, then
orient B ◦−∗R as B → R.

R11: If A−∗B, then A→ B.
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Algorithm 1: Update a PMG with local background knowledge
Input: A PMG Mi, BK(X)

Output: Updated graph Mi+1

1 For any K ∈ PossDe(X,Mi[−C]) and any T ∈ C such that K ◦−∗ T in Mi, orient K ←∗T (the
mark at T remains); for all K ∈ PossDe(X,Mi[−C]) such that X ◦−∗K, orient X → K;

2 Orient the subgraph Mi[PossDe(X,Mi[−C])\{X}] as follows until no feasible updates: for any
two vertices Vl and Vj such that Vl ◦−◦ Vj , orient it as Vl → Vj if (i) FVl

\FVj
6= ∅ or (ii)

FVl
= FVj as well as there is a vertex Vm ∈ PossDe(X,Mi[−C])\{X} not adjacent to Vj

such that Vm → Vl ◦−◦ Vj ;
3 Apply the orientation rules until the graph is closed under the orientation rules.

Prop. 1 implies the soundness ofR′4 to orient a PAG P or a PMG obtained from P with local BK. See
Appendix A for the proof. R11 is immediate due to no selection bias assumption. In the following,
we make a convention that when we say the orientation rules, they refer to R1 − R3,R8 − R10

of Zhang [35] and R′4,R11. A PMG is closed under the orientation rules if the PMG cannot be
oriented further by the orientation rules.

Proposition 1. Given a PAG P , for any PMG M that is obtained from P by orienting some circles
in P (or M = P),R′4 is sound to orient M with local background knowledge.

Proof sketch: If there is B ←∗R in an MAG consistent with the case ofR′4, there must be a minimal
collider path between K and R across B, in which case B ←∗R should have been identified in the
PAG according to Zhao et al. [38], Zhang [35], contradiction. �

Next, we will prove the completeness of the proposed orientation rules. It is somewhat complicated.
We first give a roadmap for the proof process. There are mainly two parts. The first is that we present
a complete algorithm to orient P with the local BK regarding V1, V2, · · · , Vk. The second part is
to prove that the algorithm orient the same marks as the proposed orientation rules. Combining
these two parts, we conclude the orientation rules are complete to orient a PAG. The construction
of the algorithm and the corresponding proof for the completeness of the algorithm in the first step
is the most difficult part. To achieve the construction, we divide the whole process of orienting a
PAG with BK regarding V1, V2, · · · , Vk into k steps. Beginning from the PAG P (P is also denoted
by M0), in the (i+ 1)-th (0 ≤ i ≤ k − 1) step we obtain a PMG Mi+1 from Mi by incorporating
BK(Vi+1) and orienting some other circles further. To obtain the updated graph in each step, we
propose an algorithm orienting a PMG with local BK incorporated in this step. Repeat this process by
incorporating BK(V1), BK(V2), . . . , BK(Vk) sequentially, we obtain the PMG with incorporated
BK regarding V1, · · · , Vk. We will prove that the k-step algorithm to orient PAG with local BK
regarding V1, · · · , Vk is complete, by an induction step that if the first i-step algorithm is complete
to update the PAG P with BK regarding V1, · · · , Vi, then the (i+ 1)-step algorithm is complete to
update P with BK regarding V1, · · · , Vi+1. Hence the proof in the first part completes. In the second
part, we show that the k-step algorithm orients the same marks as the proposed orientation rules.
We thus conclude that the orientation rules are sound and complete for causal identification in the
presence of latent variables given local BK.

We present Alg. 1 to obtain Mi+1 from Mi by incorporating BK(Vi+1). For brevity, we denote Vi+1

byX , and introduce a set of vertices C defined as C = {V ∈ V(P) | V ∗→ X ∈ BK(X)} to denote
the vertices whose edges with X will be oriented to ones with arrowheads at X according to BK(X)
directly. In Mi+1, there is X ←∗V for V ∈ C and X−∗V for V ∈ {V ∈ V(P) | V ∗−◦X in Mi}\C
oriented directly according to BK(X). We define FMi

Vl
= {V ∈ C ∪ {X} | V ∗−◦ Vl in Mi} for

any Vl ∈ PossDe(X,Mi[−C])\{X}, which is denoted by FVl
for short. FVl

denotes the vertices in
C ∪ {X} whose edges with Vl are oriented to ones with arrowheads at Vl in the first step of Alg. 1.

In the first step of Alg. 1, the orientation at X follows BK(X), and the orientation at the vertices
apart of X is motivated as the necessary condition for the ancestral property. Speaking roughly, if
there is an oriented edge K → T in the case of the first step, then no matter how we orient the other
circles, there will be a directed or almost directed cycle, unless we introduce new unshielded colliders
(which takes new conditional independences relative to those in P), both of which are evidently
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Figure 1: An example to demonstrate the implementation of each step of Alg. 1. Fig. 1(a) depicts a
PMG Mi. Suppose the local BK is in the form of V1 ←∗V2, V1−∗V5, V1−∗V4. The Fig. 1(b)/1(c)/1(d)
displays the graph obtained after the first/second/third step of Alg. 1. The edges oriented by each step
are denoted by red dashed lines.

invalid to obtain an MAG in the MEC represented by P . And the orientation in the second step is
motivated as the necessary condition for that there are no new unshielded colliders in the oriented
graph relative to the PAG P . If there is an MAG where there is an inconsistent edge with the edge
oriented in this step, then there must be new unshielded colliders relative to P , which implies that the
MAG is not consistent to P . The third step orients some other circles based on the updated structure.

Example 1. See the example in Fig. 1. Suppose the input PMG Mi in Alg. 1 is the graph shown in
Fig. 1(a). And there is local BK regardingX = V1, which is in the form of V1 ←∗V2, V1−∗V5, V1−∗V4.
Hence C = {V2}. In this case, PossDe(X,Mi[−C]) = PossDe(V1,Mi[−V2]) = {V1, V3, V4, V5}.
And FV3

= {V2}, FV4
= {V1}, FV5

= {V1, V2}. When we implement Alg. 1, in the first step, the
edges denoted by red dashed lines in Fig. 1(b) are oriented. Among them, V1◦−◦V2/V1◦−◦V5/V1◦→ V4
is transformed to V1 ←◦V2/V1 → V5/V1 → V4 due to V1 = X,V2 ∈ C, V4, V5 ∈ {V ∈ V(P) | V ∗−◦
X in Mi}\C; and V2◦→ V5/V2◦→ V3 is oriented due to V2 ∈ C and V3, V5 ∈ PossDe(X,Mi[−C]).
In the second step of Alg. 1, the edge denoted by red dashed line in Fig. 1(c) is oriented due to (1) a
circle edge V3 ◦−◦ V5 after the first step, where V3, V5 ∈ PossDe(X,Mi[−C]); (2) FV3

= {V2} ⊂
{V1, V2} = FV5 . In the third step of Alg. 1, the edges denoted by red dashed lines in Fig. 1(d) is
oriented byR1 of the orientation rules.

Then, we present the key induction result in Thm. 1 for the graph obtained by Alg. 1 in each step.
Due to the page limit, we only show a proof sketch, with a detailed version in Appendix B. Then
with Thm. 1, we directly conclude that k-step algorithm is complete to orient the PAG with the local
BK regarding V1, . . . , Vk in Cor. 1.

Theorem 1. Given i, suppose Ms,∀s ∈ {0, 1, . . . , i} satisfies the five following properties:

(Closed) Ms is closed under the orientation rules.

(Invariant) The arrowheads and tails in Ms are invariant in all the MAGs consistent to P and BK
regarding V1, . . . , Vs.

(Chordal) The circle component in Ms is chordal.

(Balanced) For any three vertices A,B,C in Ms, if A∗→ B ◦−∗C, then there is an edge between
A and C with an arrowhead at C, namely, A∗→ C. Furthermore, if the edge between A and B is
A→ B, then the edge between A and C is either A→ C or A◦→ C (i.e., it is not A↔ C).

(Complete) For each circle at vertex A on any edge A◦−∗B in Ms, there exist MAGsM1 andM2

consistent to P and BK regarding V1, . . . , Vs with A←∗B ∈ E(M1) and A→ B ∈ E(M2).

Then the PMG Mi+1 obtained from Mi with BK(Vi+1) by Alg. 1 also satisfies the five properties.

Proof sketch: For brevity, we denote Vi+1 by X . (A) The closed property holds due to the third step
of Alg. 1.(B) The invariant property holds because all the orientations in Alg. 1 either follow BK(X)
or are motivated as the necessary condition for the ancestral property and the fact that there cannot be
new unshielded colliders introduced relative to Mi. (C) The chordal property is proved based on the
fact that only the first two steps of Alg. 1 possibly introduce new arrowheads, while the third step will
only transform the edges as A◦→ B to A→ B, which is proved in Lemma 12 in Appendix B. With
this fact, it suffices to prove that the circle component in the graph obtained after the first two steps is
chordal. Denote the graph after the first two steps by M̄i+1. We can prove that the circle components
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in M̄i+1[PossDe(X,Mi[−C])] and in M̄i+1[−PossDe(X,Mi[−C])] are chordal, respectively. Since
there are no circle edges connecting PossDe(X,Mi[−C]) and V\PossDe(X,Mi[−C]) (otherwise it
has been oriented in the first step of Alg. 1), we conclude the desired result. (D) The balanced property
of Mi+1 is proved based on three facts that (1) in Alg. 1, if we transform a circle to arrowhead at
V , then V ∈ PossDe(X,Mi[−C]); (2) if there is A ∈ PossDe(X,Mi[−C]) and A ◦−∗ B, B 6∈ C,
in Mi+1, then B ∈ PossDe(X,Mi[−C]); (3) Mi satisfies the balanced property. We can prove
that it is impossible that there is a sub-structure Vi∗→ Vj ◦−∗ Vk where Vi is not adjacent to Vk or
there is Vi ∗−◦ Vk in Mi+1 by discussing whether Vi, Vj , Vk belongs to PossDe(X,Mi[−C]). (E)
The completeness property is proved by showing two results: (1) for edge circle edge A ◦−◦B and
C◦→ D in Mi+1, C◦→ D can be transformed to C → D and the circle edge can be oriented as both
A→ B andA← B in the MAGs consistent to P and local BK regarding V1, · · · , Vi+1; (2) in Mi+1,
each edge A◦→ B can be oriented as A ↔ B in an MAG consistent to P and local BK regarding
V1, · · · , Vi+1. In this part, the most difficult part is to prove the first result, with which the second
result can be proved directly following the proof process of Thm. 3 of Zhang [35]. In the proof for
the first result, we show that any MAG obtained from Mi+1 by transforming the edges as A◦→ B
to A→ B and the circle component into a DAG without new unshielded colliders is consistent to
P and local BK regarding V1, . . . , Vi+1. If not, we can always find an MAG obtained from Mi by
transforming the edges as A◦→ B to A → B and the circle component into a DAG without new
unshielded colliders that is not consistent to P and local BK regarding V1, . . . , Vi. By induction,
there is an MAG obtained from P by transforming the edges as A◦→ B to A → B and the circle
component into a DAG without new unshielded colliders that is not consistent to P , contradiction
with Thm. 2 of Zhang [35]. We conclude the first result. �

Corollary 1. The k-step algorithm from M0(= P) to Mk is sound and complete. That is, the
non-circle marks in Mk are invariant in all the MAGs consistent to P and BK regarding V1, . . . , Vk.
And for each circle in Mk, there exist both MAGs with an arrowhead and MAGs with a tail here that
are consistent to P and BK regarding V1, . . . , Vk.

Proof. Previous studies [34, 35] show that the last four properties in Thm. 1 are fulfilled in PAG, the
case inR′4 will never happen in P because such circles have been oriented byR4 in the process of
learning P , and the case inR11 is never triggered by the rules to learn P . Hence P satisfies the five
properties. With the induction step implied by Thm 1, we directly conclude that Mk satisfies the five
properties, thereby satisfying the invariant and complete property.

Theorem 2. The orientation rules are sound and complete to orient a PAG with the local background
knowledge regarding V1, . . . , Vk.

Proof. The soundness ofR′4 is shown by Prop. 1. The soundness of other rules immediately follows
Thm. 4.1 of Ali et al. [34] and Thm. 1 of Zhang [35]. We do not show the details. Roughly speaking,
the violation of these rules will lead to that there are new unshielded colliders or directed or almost
directed cycles in the oriented graph relative to P . The main part is to prove the completeness.

According to Cor. 1, it suffices to prove that in each step by Alg. 1 to incorporate BK(X) into a PMG
Mi, the orientations in Alg. 1 either follow BK(X) directly, or can be achieved by the proposed
orientation rules. The orientation in the second step of Alg. 1 can be achieved by R1, because no
matter FVl

\FVj
6= ∅ or Vm → Vl ◦−◦ Vj , there is F ∈ FVl

\FVj
or F = Vm respectively such that

F∗→ Vl ◦−◦ Vj where F is not adjacent to Vj . The orientation in the third step naturally follows the
orientation rules. For the orientation in the first step, X ←∗V for V ∈ C is dictated by BK(X), and
X → V for V ∈ {V ∈ V(P) | X ◦−∗ V }\C is obtained from X −∗V dictated by BK(X) andR11.
The remaining part is to prove for K ∈ PossDe(X,Mi[−C])\{X} and T ∈ C, if there is K ◦−∗ T
in Mi, K ←∗T can be oriented by the proposed orientation rules when we incorporate BK(X).

Due to K ∈ PossDe(X,Mi[−C])\{X}, there is a possible directed path from X to K that does
not go through C. According to Lemma 2 in Appendix B, there is a minimal possible directed path
p = 〈X(= F0), F1, . . . ,K(= Ft)〉, t ≥ 1 where each vertex does not belong to C. Hence X → F1

is oriented by BK(X) and R11 unless X → F1 has been in Mi. Hence, X → F1 → · · · → Ft

can be oriented by R1 after incorporating BK(X) unless they have been in Mi. If t = 1, there is
T∗→ X → K, thus K ←∗T can be oriented byR2. Next, we consider the case when t ≥ 2.

We first prove that for any Fm ∈ F1, . . . , Ft, t ≥ 2, Fm is adjacent to T , and there is not Fm →
T in Mi. Suppose Fm is not adjacent to T , there must be a sub-structure of Mi induced by
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Figure 2: Fig. 2(a) depicts a PAG P , with the local BK regarding V1 in the form of V1 ←∗V2, V1 ←
∗V5, V1−∗V4 and the local BK regarding V2 in the form of V2 ←∗V1, V2−∗V3, V2−∗V5. The connected
circle components are denoted by shaded area. The edges oriented by the orientation rules are denoted
by red dashed lines.

Fm−s, Fm−s+1, . . . , Fm+l, T , 1 ≤ s ≤ m, 1 ≤ l ≤ t−m, such that T is only adjacent to Fm−s and
Fm+l in this sub-structure. There are at least four vertices in this sub-structure. Hence there must be
an unshielded collider (denoted by UC for short) in this sub-structure in P , otherwise no matter how
we orient the circle there is either a new UC relative to P or a directed or almost directed cycle there.
Since p is possibly directed, the UC is at either Fm+l or T (i.e., ∗→ Fm+l( or T )←∗). If there is a UC
at Fm+l, T∗→ Fm+l and Fm+l−1∗→ Fm+l are identified in P . Thus Fm+l → Fm+l+1 · · · → Ft is
identified in P . Due to the completeness of FCI algorithm to learn P , there is K ←∗T in P , because
there is not an MAG with K → T (there has been T∗→ Fm+l → · · · → K in P). Hence there is
K ←∗T in Mi, contradicting with K ◦−∗ T in Mi. If there is not a UC at Fm+l, UC can only be at T .
Thus Fm−s∗→ T ←∗Fm+l is identified in P . Since p is possibly directed, Fm+l−1 is not adjacent
to T , and there is not a UC at Fm+l in the sub-structure, there cannot be Fm+l ↔ T in P . Hence
the path 〈Fm−s, Fm−s+1, . . . , Fm+l, T 〉 in P is an uncovered possible directed path, Fm−s → T is
identified in P (otherwise R9 applies). When incorporating BK(X), there is a (almost) directed
cycle T∗→ X → · · · → Fm−s → T , contradicting with the correctness of BK. Hence, Fm is
adjacent to T . Similarly, if Fm → T in Mi, there is T∗→ X → · · · → Fm → T , impossibility.

Finally, since F1 is adjacent to T , and T∗→ X → F1 is oriented according to BK(X), there is
T∗→ F1 oriented by R2 unless T∗→ F1 has been in Mi. Hence there is always T∗→ F1 by the
orientation rules. Consider T∗→ F1 → F2, there is T∗→ F2 oriented by R2 unless T∗→ F2 has
been in Mi. Repeat the process for F3, F4, . . . , Ft(= K), we can prove that if there is Ft(= K)◦−∗T
in Mi, there is T∗→ Ft(= K) oriented byR2. The rules thus orient the same marks as Alg. 1.

Example 2. We give an example in Fig. 2. Suppose we obtain a PAG as Fig. 2(a) with observational
data and have the local BK regarding V1, V2. We divide the whole process of obtaining a PMG from
P with the local BK into obtaining M1 from P with BK(V1) by Alg. 1 and then obtaining M2 from
M1 with BK(V2) by Alg. 1. M1 and M2 are shown in Fig. 2(b) and 2(c), respectively. It is not hard
to verify that all of P , M1, M2 satisfy the closed, chordal, and balanced properties defined in Thm 1.
Note if we do not considerR′4, the edge colored red in Fig. 2(b) cannot be oriented. Fig. 2(a) also
shows a case where BK(V1) is not tiered [37]. The reason is that the vertices V1, V4, V5 cannot
partitioned into disjoint subsets with explicit causal order because V1 and V4 belong to different
subsets according to BK(V1) but V5 has ancestor relation with neither V1 nor V4.

4 Active Causal Discovery Framework

The establishment of the orientation rules for causal identification with local BK makes causal
discovery by interventions possible in the presence of latent variables. Hence, on the basis of the
theoretical results, we propose an active learning framework for causal discovery in the presence of
latent variables, with the target of learning the MAG with as fewer interventions as possible. The
framework is comprised of three stages. In Stage 1, we learn a PAG with observational data. In Stage
2, we select a singleton variable X ∈ V1, . . . , Vd to intervene and collect the interventional data. In
Stage 3, we learn causal relations with the data. For each edge X ◦−∗Vi, the circle at X can be learned
by a two-sample test on whether the interventional distribution of Vi equals to the observational one.
There is X ←∗Vi learned if they are equal, and X −∗Vi otherwise. Hence, the knowledge taken by the
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Algorithm 2: Intervention variable selection based on maximum entropy criterion with MH alg.
Input: A PMG Mi oriented based on P and BK regarding V1, . . . , Vi, number of MAGs L
Output: The selected intervention variable X

1 Obtain an MAGM0 based on Mi by transforming ◦→ to→ and the circle component into a
DAG without new unshielded colliders;

2 for t = 1, 2, . . . , L′ do
3 Sample an MAGM′ from S(Mt−1);
4 ρ = min(1, |S(Mt−1)|

|S(M′)| );
5 Sample u from uniform distribution U [0, 1];
6 if u ≤ ρ then Mt =M′ else Mt =Mt−1 ;
7 S = {Mt,1≤t≤L′ | Mt has the non-circle marks in Mi} . The set of MAGs consistent to Mi;
8 s← 0, X ← ∅;
9 for Vj = Vi+1, . . . , Vd do

10 Denote V(Vj) = {V ∈ V(Mi) | Vj ◦−∗ V in Mi}, L = |S|;
11 For each possible local structure Lk of Vj , 1 ≤ k ≤ 2|V(Vj)|, we count the number Nk of the

appearance of Lk in the L MAGs from S;

12 s′ = −
∑2|V(Vj)|

k=1
Nk

L log Nk

L ;
13 if s ≤ s′ then X ← Vj , s← s′;
14 return X .

interventional data is local. We repeat the second and third stages until we identify the MAG. Since
the orientation rules are complete, the graph can be updated completely by each intervention. The
only remaining problem is how to select the intervention variable in Stage 2.

Considering that the whole process is sequential, we only focus on the intervention variable selection
in one round. Without loss of generality, suppose we have obtained a PMG Mi by i interventions on
V1, V2, . . . , Vi, and will select a variable from {Vi+1, . . . , Vd} to intervene. We adopt the maximum
entropy criterion [22]. For Mi, we select the variable X that maximizes

HX = −
M∑
j=1

lj
L

log
lj
L
, (1)

where j is an index for a local structure of X (a local structure of X denotes a definite orientation of
the marks at X), M denotes the number of different local structures, lj denotes the number of MAGs
consistent to Mi which has the j-th local structure of X , and L denotes the total number of MAGs
consistent to Mi. Intuitively, the maximum entropy criterion is devoted to selecting the intervention
variable X such that there is a similar number of MAGs with each local structure of X and as more
as possible local structures of X . A justification for intervening on such a variable is that we hope to
have a small space of MAGs after the intervention no matter what the true local structure of X is.

However, it is hard to count the number of MAGs consistent to Mi with each definite local structure.
Even in causal sufficiency setting, implementing such operation (generally called counting maximally
oriented partial DAGs) is #P-complete [39]. Considering DAG is a special case for MAG, the
counting of MAGs is harder. Hence, we adopt a sampling method based on Metropolis-Hastings
(MH) algorithm [40], to uniformly sample from the space of MAGs. The algorithm begins from an
MAG consistent to Mi, and in each round we transform the MAG to a candidate MAG and decide to
accept or reject it with some probability. Here, we introduce an important result of Zhang and Spirtes
[41] for MAGs transformation in Prop. 2.
Proposition 2 (Zhang and Spirtes [41], Tian [42]). LetM be an arbitrary MAG, and A → B an
arbitrary directed edge inM. LetM′ be the graph identical toM except that the edge between A
and B is A↔ B.M′ is an MAG Markov equivalent toM if and only if

(1) there is no directed path from A to B other than A→ B inM;

(2) for any C → A inM, C → B is also inM; and for any D ↔ A inM, either D → B or
D ↔ B is inM;

(3) there is no discriminating path for A on which B is the endpoint adjacent to A inM.
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In the MAG sampling algorithm, in each step we transform the current MAG to a new MAG by
converting a directed edge to bi-directed edge or a bi-directed one to directed one, where we use
Prop. 2 to determine whether an MAG Markov equivalent to the current MAG can be obtained by
the conversion. For MH algorithm, a stationary distribution equal to the desired distribution can
be obtained if any two states can be transformed to each other in limited steps [43]. As implied by
Theorem 3 of Zhang and Spirtes [41], any MAG can be transformed to another Markov equivalent
MAG in a limited number of transformations above. Hence, MH algorithm is valid to sample MAGs
uniformly from the space of MAGs consistent to P . Then, we only remain the MAGs that have the
same non-circle marks as Mi. In this way, we obtain a set of MAGs which are uniformly sampled
from the space of MAGs consistent to Mi.

Given an MAGM, let S(M) denote the set of MAGs that can be obtained fromM by transforming
one bi-directed edge to directed edge or one directed edge to bi-directed edge according to Prop. 2.
Denote the cardinality of S(M) by |S(M)|. We set the probability Q(M′ | M) of an MAGM
transformed to another MAGM′ ∈ S(M) as 1/|S(M)|. Hence, the acceptance ratio ρ that is used
to decide whether to accept or reject the candidate is

ρ = min

(
1,
p(M′)Q(M |M′)
p(M)Q(M′ | M)

)
= min

(
1,
|S(M)|
|S(M′)|

)
.

We propose Alg. 2 to select the intervention variable X . As shown by Lemma 15.1 in Appendix B,
the graphM0 is an MAG consistent to Mi. From Line 2-Line 6, we execute MH algorithm to sample
L′ MAGs. Then, we select the MAGs among them which are consistent to Mi on Line 7. Finally, we
estimate the entropy by (1) and select X from Line 9-Line 14.

5 Experiments

In this section, we conduct a simple simulation of the three-stage active learning framework. We
generate 100 Erdös-Rényi random DAGs for each setting, where the number of variables d = 10
and the probability of including each edge p ∈ {0.1, 0.15, 0.2, 0.25, 0.3}. The weight of each edge
is drawn from U [1, 2]. We generate 10000 samples from the linear structural equations, and take
three variables as latent variables and the others as observed ones. In the implementation of the MH
algorithm in Alg. 2, we discard the first 500 sampled MAGs and collect the following 1000 MAGs.
For each intervention variable X , we collect 10000 samples under do(X = 2), and learn the circles
at X by two-sample test with a significance level of 0.05.

We compare the maximum entropy criterion with a baseline random criterion where we randomly
select one variable with circles to intervene in each round. We show the results in Tab. 1. # int. denotes
the number of interventions to achieve MAG identification. The effectiveness of the maximum entropy
criterion is verified by noting that the number of interventions with maximum entropy criterion is
fewer than that with random criterion. Further, we evaluate the three stages respectively. In Stage 1,
we obtain a PAG by running FCI algorithm with a significance level of 0.05. In Stage 2, we adopt
the two criteria to select intervention variables. In Stage 3, we learn the marks with corresponding
interventional data and orientation rules. We evaluate the performance of Stage 1 by # correct PAG/#
wrong PAG. # correct PAG/# wrong PAG denotes the number of edges that are correctly/wrongly
identified by FCI. An edge is correctly/wrongly identified by FCI if the edge learned by FCI is
identical/not identical to the true PAG. The performance of Stage 2 is evaluated by # int.. And we
evaluate the performance of Stage 3 by # correct int./# wrong int., where # correct int./# wrong int.
denotes the number of edges whose direction are correctly/wrongly identified by interventions. An
edge is correctly/wrongly identified by interventions if its existence is correctly identified in P but the
direction is uncertain, and after interventions we learn its direction correctly/wrongly. We evaluate
the performance of the whole process by Norm. SHD and F1. Norm. SHD denotes the normalized
structural hamming distance (SHD), which is calculated by dividing SHD by d(d− 1)/2. F1 score is
calculated by the confusion matrix to indicate whether the edge between any two vertices is correctly
learned. According to the SHD and F1 score, the active framework can learn the MAG accurately
when p is not large. And as shown by the evaluations of Stage 1 and Stage 3, the marks are learned
accurately in Stage 3, and most of the mistakes are generated in Stage 1. Hence, in the active learning
framework, the PAG estimation in the first stage is the bottleneck of having a good performance.
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Table 1: Number of interventions, normalized SHD, F1 score, number of correctly/ wrongly learned
marks by interventions, and number of correctly/wrongly learned marks in PAG over 100 simulations
with d = 10 and varying p in the format of mean ± std.

Strategy-p # int. Norm. SHD F1 # correct int. # wrong int. # correct PAG # wrong PAG

Random-0.10 2.88 ± 1.28 0.02 ± 0.04 0.85 ± 0.29 3.92 ± 2.40 0.11 ± 0.53 4.78 ± 3.11 0.39 ± 0.82MCMC-0.10 2.77 ± 1.19 0.02 ± 0.04 0.85 ± 0.29 4.00 ± 2.40 0.03 ± 0.22

Random-0.15 3.30 ± 1.15 0.02 ± 0.05 0.91 ± 0.17 5.17 ± 2.62 0.10 ± 0.41 7.21 ± 3.85 0.40 ± 0.92MCMC-0.15 3.20 ± 1.03 0.02 ± 0.04 0.92 ± 0.16 5.25 ± 2.66 0.02 ± 0.14

Random-0.20 3.59 ± 1.22 0.04 ± 0.06 0.91 ± 0.15 6.26 ± 2.75 0.19 ± 0.61 9.26 ± 3.94 0.59 ± 1.30MCMC-0.20 3.42 ± 1.16 0.03 ± 0.06 0.92 ± 0.15 6.38 ± 2.70 0.07 ± 0.33

Random-0.25 3.47 ± 1.34 0.08 ± 0.14 0.89 ± 0.18 7.08 ± 3.37 0.06 ± 0.34 11.92 ± 4.01 1.59 ± 2.85MCMC-0.25 3.22 ± 1.19 0.08 ± 0.14 0.89 ± 0.18 7.05 ± 3.39 0.09 ± 0.35

Random-0.30 3.64 ± 1.32 0.14 ± 0.15 0.83 ± 0.18 7.03 ± 3.33 0.36 ± 1.01 12.59 ± 4.08 2.63 ± 3.19MCMC-0.30 3.55 ± 1.37 0.14 ± 0.15 0.83 ± 0.18 7.25 ± 3.50 0.14 ± 0.43

6 Conclusion

In this paper, we show what causal relations are identifiable in the presence of latent variables given
local background knowledge with sound and complete orientation rules. Based on the theoretical
results, we give the first active learning framework for causal discovery in the presence of latent
variables. In the future, we will investigate the causal relations identifiability with general background
knowledge. It is also worthy to study how our research may help some recent novel decision-making
methodology [44].
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A Orientation Rules for Causal Discovery with Observational Data

In this section, we show the complete orientation rules proposed by Zhang [35] for causal discovery
with observational data in the presence of latent variables and selection bias. There are eleven
rules (R0 − R11). Since selection bias is not considered in this paper, we do not show the cases
(R5−R7) that happen only when there is selection bias. R0 is triggered according to the conditional
independence relationship at the beginning of learning a PAG. It is evidently not triggered after, hence
we do not show it as well.

R1: If A∗→ B ◦−∗R, and A and R are not adjacent, then orient the triple as A∗→ B → R.

R2: If A→ B∗→ R or A∗→ B → R, and A ∗−◦R, then orient A ∗−◦R as A∗→ R.

R3: If A∗→ B ←∗R, A ∗−◦D ◦−∗R, A and R are not adjacent, and D ∗−◦B, then orient D ∗−◦B
as D∗→ B.

R4: If 〈K, . . . , A,B,R〉 is a discriminating path between K and R for B, and B ◦−∗ R; then
if B ∈ Sepset(K,R), orient B ◦−∗ R as B → R; otherwise orient the triple 〈A,B,R〉 as
A↔ B ↔ R.

R8: If A→ B → R, and A◦→ R, orient A◦→ R as A→ R.

R9: If A◦→ R, and p = 〈A,B,D, . . . , R〉 is an uncovered possible directed path from A to R
such that R and B are not adjacent, then orient A◦→ R as A→ R.

R10: Suppose A◦→ R, B → R ← D, p1 is an uncovered possible directed path from A to B,
and p2 is an uncovered possible directed path from A to D. Let U be the vertex adjacent to A on
p1 (U could be B), and W be the vertex adjacent to A on p2 (W could be D). If U and W are
distinct, and are not adjacent, then orient A◦→ R as A→ R.

In this paper, when we orient the PAG P with local BK, we replace R4 by R′4. We will show the
soundness ofR′4 in Prop. 1. Before that, we present a fact in Lemma 1.

Lemma 1. If there exists a minimal collider path in an MAGM consistent to a PAG P , then it is
also a collider path in P .

Proof. Suppose a minimal collider path p inM, we consider its corresponding path in P . If there
exists a circle or tail at the non-endpoint vertex on this path, according to the completeness of FCI [35],
there exists an MAG Markov equivalent toM that has a tail there, which contradicts Theorem 2.1
of Zhao et al. [38] that Markov equivalent MAGs have the same minimal collider paths. Hence the
corresponding path of p in P is also a collider path.

Proposition 1. Given a PAG P , for any PMG M that is obtained from P by orienting some circles
in P (or M = P),R′4 is sound to orient M with local background knowledge.

Proof. Suppose there is a discriminating path 〈K, . . . , A,B,R〉 betweenK andR forB, andB ◦−∗R
in a PMG M such that there exists an MAG M consistent to M. According to the definition of
discriminating path and the soundness ofR2, there isB◦→ R. Suppose the violation ofR′4, that is, in
M there is B ↔ R. Since there is A→ R, the edge between A and B can only be A↔ B due to the
ancestral property. Hence, there is a collider path between K and R as K∗→ · · · ↔ A↔ B ↔ R.
If this collider path is a minimal one, then according to Lemma 1 the collider path is identifiable in P ,
thus there is A↔ B ←∗R in M, contradiction. Hence the collider path is not a minimal collider path
from K to R, there is a path p1 comprised of a subset of these vertices that is a minimal collider path
from K to R. Note (1) for any vertex V in the non-endpoint from K to B, there is V → R. And
(2) K is not adjacent to R. Hence the only vertex that can be adjacent to R in p1 is B. Hence the
minimal path is as 〈K, . . . , B,R〉. According to Lemma 1 again, B ←∗R is identifiable in P , thus
there is B ←∗R in M, contradiction. We conclude the impossibility of the violation ofR′4.

B Proof of Theorem 1

For brevity, when we introduce a set of vertices C defined as C = {V ∈ V(P) | V ∗→ X ∈
BK(X)} to denote the vertices whose edges with X will be oriented to ones with arrowheads at X
according to BK(X), we call the BK (of X) is dictated by C.
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We first show two definitions. A vertex A of G is called simplicial if its adjacency set Adj(A,G)
induces a complete subgraph of G. A perfect elimination order of a graph G is an ordering σ =
(V1, . . . , Vn) of its vertices, so that each vertex Vi is a simplicial vertex in the induced subgraph
GVi,...,Vn

.
Proposition 3 (Ali et al. [45], Zhang [35]). In a PAGP , for any three verticesA,B,C, ifA∗→ B◦−∗C,
then there is an edge between A and C with an arrowhead at C, namely, A∗→ C. Furthermore, if
the edge between A and B is A→ B, then the edge between A and C is either A→ C or A◦→ C
(i.e., it is not A↔ C).
Proposition 4 (Spirtes and Richardson [46]). Two MAGs over the same set of vertices are Markov
equivalent if and only if

(1) They have the same adjacencies;

(2) They have the same unshielded colliders;

(3) If a path is a discriminating path for a vertex V in both graphs, then V is a collider on the
path in one graph if and only if it is a collider on the path in the other.

Lemma 2. Consider Mi in Thm. 1 that satisfies the five properties. If there is a possible directed
path from A to B in Mi, then there is a minimal possible directed path from A to B in Mi.

Proof. If the path is minimal, then it trivially holds. If not, suppose the path comprised of V0(=
A), V1, . . . , Vm(= B). As long as the path is not minimal, we can always find a sub-path comprised
of Vi, Vi+1, . . . , Vj , j − i ≥ 2 such that any non-consecutive vertices in Vi, · · · , Vj are not adjacent
except for an edge between Vi and Vj . We will show that it is impossible that there is Vi ←∗Vj in Mi.
If j − i = 2, when there is an edge Vi ←∗Vj and an edge between Vi and Vi+1 with a circle or tail at
Vi, according to the balanced property and closed property of Mi under the orientation rules (R2 is
triggered here) respectively, there is always an edge Vi+1 ←∗Vj , contradicting the possible directed
path comprised of an edge from Vi+1 to Vj . If j − i > 2 and Vi ←∗Vj , due to the non-adjacency
of the vertices, there is either Vi → Vi+1 → . . . Vj or Vi ←∗Vi+1 identified in P . The latter case
is impossible due to the possible directed path. For the former case, there is an almost directed or
directed cycles, contradiction. Hence, we can find a shorter possible directed path comprised of
V0, V1, . . . , Vi, Vj , Vj+1, . . . , Vm in Mi. Repeat this process until we obtain a possible directed path
that there is not a proper sub-structure where any non-consecutive vertices are not adjacent except for
an edge between endpoints. This path is a minimal possible directed path.

Lemma 3. Consider Mi in Thm. 1 that satisfies the five properties. If there is A∗→ B in Mi, then
there is an edge as A∗→ V for any V in a connected circle component with B in Mi, and A and B
are not in a connected circle component.

Proof. It is a direct conclusion according to the balanced property of Mi. We first consider any one
vertex V1 that is with a circle edge with B. That is, there is A∗→ B ◦−◦ V1 in Mi. According to
the balanced property of Mi, there is an edge A∗→ V1. Similarly, we can conclude that the result
holds for all the vertices in a connected circle component with B. Hence there cannot be a circle edge
linking A and any one vertex in a connected circle component with B. Thus A and B are not in a
connected circle component.

Lemma 4. Consider Mi in Thm. 1 that satisfies the five properties. Suppose an MAGM consistent
to Mi and the local BK of X dictated by C. Then V ∈ PossDe(X,Mi[−C]) if and only if V ∈
De(X,M).

Proof. SupposeM an MAG consistent to Mi with the local BK of X dictated by C.

We prove the “only if” statement. If V ∈ PossDe(X,Mi[−C]), by Lemma 2, there is a minimal
possible directed path p from X to V comprised of X,F1, . . . , Fm(= V ). Due to F1 6∈ C and local
BK, the edge between X and V1 can only be X → V1 inM. Hence the path can only be directed in
M, otherwise there is at least one unshielded collider Fi−1∗→ Fi ←∗Fi+1 inM, thus unshielded
collider are identified in P and Mi, contradicting with that p is a minimal possible directed path from
X to Fm in Mi.

We then prove the “if” statement. There must be a minimal directed path X → F1 · · · →
Fm−1, Fm(= V ) from X to V in M. It is evident that X cannot be adjacent to F2, . . . , Fm.
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The corresponding path in Mi of this path is a minimal possible directed path from X to V . If
V 6∈ PossDe(X,Mi[−C]), there can only be F1 ∈ C (since the vertices F2, F3, . . . , Fm are not
adjacent to X). In this case X ←∗F1 should be dictated by C inM, which contradicts the edge
X → F1 inM. The proof completes.

Lemma 5. The PMG Mi+1 in Thm. 1 satisfies the closed property.

Proof. It is due to the third step of Alg. 1.

Lemma 6. The PMG Mi+1 in Thm. 1 satisfies the invariant property.

Proof. We denote the oriented graph based on Mi and the local BK of X dictated by C after the first
two steps of Alg. 1 by M̄i+1. Note in the third step of Algorithm 1 we just update the M̄i+1 with the
orientation rules. It is easy to prove the orientation rules are sound to orient M̄i+1 referring to the
results of Ali et al. [45], Zhang [35] because new unshielded colliders, or directed or almost directed
cycles will be introduced otherwise, we thus do not present the details here. It suffices to show that
the non-circle marks in M̄i+1 are invariant in all MAGs consistent to Mi with the local BK of X
dictated by C.

Consider ∀K ∈ PossDe(X,Mi[−C]) and ∀T ∈ C. As shown by Lemma 4, for any MAG M
consistent to Mi and the local BK dictated by C, there is K ∈ De(X,M). For brevity, in the
following we call such MAG by the MAG consistent to Mi and C. Considering T∗→ X → · · · → K,
the edge between K and T can only be as K ←∗T in any MAGM if K 6= X , otherwise there is a
directed or almost directed cycle inM, contradiction. If K = X , the orientation X ←∗T inM just
follows the local BK of X dictated by C.

Next we prove that the oriented edges in the second step are consistent to any MAGM consistent to
Mi and C. Suppose the edge between two vertices Vj and Vl oriented by the second step of Alg. 1
in Mi is not invariant in MAGs consistent to Mi and C. That is, there is Vl ←∗Vj in an MAGM
consistent to Mi and C. The circle edges are oriented in two cases in the second step. We consider
them one by one. (A) If FVl

\FVj
6= ∅ in Mi, there exists some vertex T ∈ FVl

\FVj
forming a

collider Vj∗→ Vl ←∗T inM. Then we prove the collider is unshielded. If Vj is adjacent to T , we
consider the edge in Mi. (a) The edge is not Vj → T , otherwise there must be a directed or almost
directed cycles X → · · · → Vj → T∗→ X inM; (b) the edge is not Vj ◦−∗ T , otherwise T ∈ FVj ;
(c) the edge is not Vj ←∗T , otherwise in Mi there is a sub-structure T∗→ Vj ◦−◦Vl ◦−∗T , contradicting
with the balanced property of Mi. Hence, T cannot be adjacent to Vj . Thus Vj∗→ Vl ←∗T is an
unshielded collider. Thus Vj∗→ Vl is identifiable in P . Since Mi is oriented based on P , there
is Vj∗→ Vl in Mi, contradicting with Vj ◦−◦ Vl in Mi. (B) If there is Vm → Vj ◦−◦ Vl where
Vm ∈ PossDe(X,Mi[−C])\{X} is not adjacent to Vl, there is an unshielded collider inM thus
Vl∗→ Vi is identifiable in P and Mi, contradiction. The proof completes.

Lemma 7. Consider Mi in Thm. 1 that satisfies the five properties. For an edge J ◦−◦K satisfying
FJ = FK in Mi[PossDe(X,Mi[−C])\{X}], if it is oriented as J → K in the second step of Alg. 1
to obtain Mi+1 based on Mi and C, then there is a vertex Vm ∈ PossDe(X,Mi[−C])\{X} such that
there is a minimal path Vm◦−◦. . .◦−◦V1(= J)◦−◦V0(= K),m ≥ 1 in Mi[PossDe(X,Mi[−C])\{X}]
where FVm

⊃ FVm−1
= · · · = FV0

.

Proof. A directed edge J → K is oriented in the second step only if in two situations: (1) FK ⊂ FJ ;
(2) FK = FJ and there is another vertex L ∈ PossDe(X,Mi[−C])\{X} that is not adjacent to K
and there is an edge L → J oriented in the second step (if L → J is not oriented in the second
step, it can only be in Mi. However, the L → J ◦−◦ K in Mi contradicts with the complete
property of Mi because in this case there is J → K in any MAG consistent to Mi). If FV0

⊂ FV1
,

in this case there is such a path for m = 1. If FV0
= FV1

, Then we could find some vertex
V2 ∈ PossDe(X,Mi[−C])\{X} that is not adjacent to V0 and there is an edge V2 → V1 oriented
in the second step. And similar to the analysis for V1, we conclude either FV1

⊂ FV2
, in this case

there is a path satisfying the result for m = 2; or FV1 = FV2 , in this case there is another vertex
V3 ∈ PossDe(X,Mi[−C])\{X} that is not adjacent to V1 and there is an edge V3 → V2 oriented.
Repeat the process and we can always find an uncovered path Vm◦−◦. . .◦−◦V1(= J)◦−◦V0(= K),m ≥ 1
in Mi[PossDe(X,Mi[−C])\{X}] where FV0 = · · · = FVm−1 ⊂ FVm . If the path is not minimal,
then there exists a sub-structure Vi ◦−◦ Vi+1 ◦−◦ · · · ◦−◦ Vj , j > i+ 2 where any two non-consecutive
vertices are not adjacent except for an circle edge Vi ◦−◦ Vj (the edge between Vi and Vj can only
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be a circle edge, if it is Vi∗→ Vj or Vi ←∗Vj , Vi and Vj cannot be in a connected circle component
according to Lemma 3, but there is a circle path comprised of Vi, Vi+1, . . . , Vj , contradiction). It
contradicts with the fact that the circle component in Mi is chordal. Hence the path is minimal.

Lemma 8. Suppose Ms, 0 ≤ s ≤ i in Thm. 1 satisfy the five properties, there must exist an MAG
consistent to Mi.

Proof. Suppose there does not exist an MAG consistent to Mi. According to the invariant property
of Mi and the basic assumption that the background knowledge is correct, there is not an MAG
consistent to Mi−1. Since Ms, 0 ≤ s ≤ i satisfies the invariant property, repeat the process above
and we can conclude that there is not an MAG consistent to P , contradiction.

Lemma 9. Consider Mi+1 in Thm. 1. The subgraph of Mi+1 induced by C is a complete graph.

Proof. If it is not a complete graph, new unshielded colliders are introduced by the local background
knowledge of X dictated by C when obtaining Mi+1 by Alg. 1. Hence there does not exist an
MAG consistent to Mi+1. According to the invariant property of Mi+1 implied by Lemma 6 and the
basic assumption that the background knowledge is correct, there is not an MAG consistent to Mi,
contradicting with Lemma 8.

Lemma 10. Suppose Ms, 0 ≤ s ≤ i in Thm. 1 satisfy the five properties. Then there is
PossDe(X,Mi[−C]) ∩ Pa(C,Mi) = ∅.

Proof. Suppose there is an edge V → T where V ∈ PossDe(X,Mi[−C]) and T ∈ C in Mi.
According to Lemma 4 and the definition of C, for any graph oriented from Mi with the local
background knowledge of X dictated by C, there will be a directed or almost directed cycle X →
· · ·V → T∗→ X . Hence there is not an MAG consistent to Mi, contradicting with Lemma 8.

Lemma 11. Suppose Ms, 0 ≤ s ≤ i in Thm. 1 satisfy the five properties. In the second step of Alg. 1
to obtain Mi+1 based on Mi and the local background knowledge of X dictated by C, there is not
an edge oriented as both J ← K and J → K.

Proof. For simplicity, we use M1
i to denote Mi[PossDe(X,Mi[−C])\{X}]. At first, we prove for

any distinct vertices J,K ∈ V(M1
i ), there is FJ ⊆ FK or FK ⊆ FJ . Otherwise, there must exist at

least two vertices A,B ∈ C such that there is A ∗−◦ J , B ∗−◦K, where A is not adjacent to K, and
B is not adjacent to K in M1

i . Lemma 6 implies that the arrowhead added in the first step of Alg. 1
is invariant in all the MAGs consistent to Mi and local BK of X dictated by C (we call such MAG
by MAG consistent to Mi and C for short). Hence the added arrowheads in the first step appear in
any MAGM consistent to Mi and C. According to the condition, there are A∗→ J and B∗→ K in
M. In this case, there are always new unshielded colliders inM relative to Mi no matter what the
orientation of the edge connecting J and K is inM. Hence there are always new unshielded collider
in the oriented graph relative to P . That is, there does not exist an MAG consistent to Mi and C. Due
to the correctness of BK and Lemma 6, there is not an MAG consistent to Mi, which contradicts with
Lemma 8. Hence there is FJ ⊆ FK or FK ⊆ FJ .

If FJ 6= FK , without loss of generality, suppose FJ ⊂ FK . Then J ← K is oriented in the second
step. If there is also J → K oriented in the second step, it implies there is L → J oriented in the
second step where L is not adjacent to K. In this case, no matter we orient J → K or J ← K, there
is also a new unshielded collider at J or K, hence there does not exist an MAG consistent to Mi and
C, a contradiction similar to the above case. In the following, we only consider the case of FJ = FK .
Suppose we orient both J → K and J ← K in the second step.

By Lemma 7, if we orient J → K in the second step, there is a minimal circle path V0 ◦−◦ V1 ◦
−◦ · · · ◦−◦ Vm(= J) where FVm ⊃ FVm−1 = · · · = FV0 . If we also orient J ← K in the
second step, there is a circle path Vm−1(= J) ◦−◦ Vm(= K) ◦−◦ · · · ◦−◦ Vn, n > m in M1

i where
FVm−1 = FVm = · · · = FVn−1 ⊂ Fn. Note Vm+1 is adjacent to Vm but is not adjacent to Vm−1,
while Vm−2 is adjacent to Vm−1 but not adjacent to Vm, hence Vm−2 6= Vm+1, and Vm−2, Vm−1,
Vm, Vm+1 are distinct vertices. Also note no circle edges in M1

i are oriented in the first step of Alg. 1.
Hence the circle component in M1

i is still chordal. Hence V0 ◦−◦ V1 ◦−◦ · · · ◦−◦ Vn is also a minimal
circle path, otherwise there must be a cycle comprised of circle edges whose length is larger than 3
without a chord because this cycle must contain Vm−2, Vm−1, Vm, Vm+1 where Vm−2 is not adjacent
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to Vm and Vm−1 is not adjacent to Vm+1, contradiction. Hence we consider the minimal circle path
V0 ◦−◦V1 ◦−◦ · · · ◦−◦Vn. According to Lemma 6, there must be V0 → · · · → Vm−1 and Vm ← · · ·Vn
in any MAGM consistent to Mi and C. However, in this case there are new unshielded colliders in
M relative to Mi and C no matter what the orientation of the edge connecting Vm−1 and Vm is, that
is,M is always not consistent to P . Hence there does not exist an MAG consistent to Mi and C, a
contradiction similar to the above case. The proof completes.

Lemma 12. Consider Mi in Thm. 1 that satisfies the five properties. In the third step of Alg. 1 to
obtain Mi+1 based on Mi and the local BK of X dictated by C, there are only edges as A ←◦B
transformed to A← B.

Proof. There are three possible transformations by the orientation rules: there are edges as A ◦−◦B
transformed to the edges with arrowheads; there are edges as A←◦B transformed to A↔ B; there
are edges as A←◦B transformed to A← B (A◦→ B is equivalent to A←◦B due to the generality
of A and B). We will prove the impossibility of the first two cases. We denote the graph obtained
from Mi and BK regarding Vi+1 after the first two steps of Alg. 1 by M̄i+1. The proof idea is,
suppose in the third step we orient some edges as A↔ R or orient some circle edges. We can always
find the first edge which is transformed from A←◦R to A↔ R or from circle edges to some directed
or bi-directed edges in the third step. If we prove that this edge can be neither an edge as A←◦R
transformed to A↔ B nor a circle edge, we have a contradiction. Hence we can conclude that there
are no edges as A←◦R transformed to A↔ R or circle edges transformed to directed or bi-directed
edges in the third step.

If we orient some edges A ←◦R as A ↔ R or orient some circle edges in the third step, the
first such edge is not as A←◦R and transformed to A↔ R. Suppose A←◦R is transformed to
A ↔ R by the third step of Alg. 1. Note that an arrowhead is introduced by the orientation rules.
We analyze the orientation rules. R3 is triggered in only the process of obtaining P . R′4 does not
transform an edge as A←◦R to a bi-directed edge. R8 −R10 only introduces tails. Hence onlyR1

and R2 possibly introduce arrowheads. R1 cannot transform an edge A ←◦R to A ↔ R. Hence
it suffices to prove there are no edges A ←◦R transformed to A ↔ R by R2 in the third step of
Alg. 1. According to the condition ofR2, when A←◦R is transformed to A↔ R byR2, there is (i)
A→ B ↔ R◦→ A or (ii) A↔ B → R◦→ A. We then prove two results: (1) the bi-directed edges
in (i) or (ii) cannot appear in Mi. (2) the bi-directed edges cannot be introduced in the first two steps
of Alg. 1 to obtain Mi+1 based on the local BK of X dictated by C.

(1) For (i), suppose there is B ↔ R in Mi. Since after the first two steps there is A←◦R, there is
A ∗−◦ R in Mi. According to the balanced property of Mi, there is A ←∗B in Mi, in which case
there cannot be an edge A→ B as (i). For (ii), suppose there is A↔ B in Mi. Since after the first
two steps there is B → R, there must be B → R or B ◦−∗R in Mi. For the former case, A∗→ R is
oriented in Mi since Mi is closed underR2. For the latter case, A∗→ R is oriented in Mi due to the
balanced property of Mi. Both of them contradict with A ∗−◦R in the graph after the first two steps.

(2) For (i), there is R ◦−∗A in Mi. If B ↔ R is oriented in the first two steps of Alg. 1, there is either
B◦→ R or B ←◦R in Mi. For the former case, according to the balanced property there is A←∗B
in Mi due to R ◦−∗A, which contradicts with the structure A→ B in (i). For the latter case, since
B ←◦R is transformed to B ↔ R by the first two steps of Alg. 1, there is R ∈ PossDe(X,Mi[−C])
and B ∈ C. We discuss whether A ∈ C, if A ∈ C, there is A∗→ R oriented by the first step of
Alg. 1, contradicting with the structure in (i); if A 6∈ C, since there is A ∗−◦R after the first two steps,
there is A ∗−◦R in Mi, there is A ∈ PossDe(X,Mi[−C]), hence A←∗B is oriented in the first step,
contradicting with the structure in (i). The contradiction for (ii) is similar, we thus do not present the
details.

Combining the results in (1) and (2), for the first edge in the third step that is transformed from
A←◦R toA↔ R or transformed from a circle edge to a directed or bi-directed edge, the edge cannot
be transformed byR2 as well. Hence the first edge mentioned above is not an edge transformed from
A←◦R to A↔ R because no orientation rules can achieve it.

If we orient some edges A ←◦R as A ↔ R or orient some circle edges in the third step, the
first such edge is not a circle edge. We prove that the first edge in the third step that is transformed
from A←◦R to A↔ R or transformed from a circle edge to a directed or bi-directed edge cannot be
a circle edge. We analyze the orientation rules respectively. The result is evident forR8 −R10 since
the transformed edge is as A◦→ R, which is not a circle edge. R3 is triggered in only the process
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of obtaining P . When an edge is oriented by R′4, it can be seen as that we first transform a circle
to an arrowhead byR2, then transform the other circle to tail byR′4. Hence it suffices to show that
there are no circle edge oriented by R1 and R2 in the third step of Alg. 1. We first consider R1.
Suppose there is A∗→ B ◦−◦R where A and R are not adjacent after the first two steps of updating
Mi with the local BK of X dictated by C. Since Mi satisfies the complete property, the arrowhead
at B on the edge A∗→ B can only be oriented in the first two steps, otherwise the arrowhead is in
Mi and there is either B → R or B ←∗R in Mi. Note the fact that in the first two steps of Alg. 1
we only add arrowheads at the vertex in PossDe(X,Mi[−C]). Hence B ∈ PossDe(X,Mi[−C]).
In addition, there is R 6∈ C, otherwise B ←◦R is oriented in the first step of Alg. 1. Hence there
is R ∈ PossDe(X,Mi[−C]) by Lemma 2. The edge A∗→ B is oriented by either the first or the
second step. If A∗→ B is oriented by the first step, then B → R should be oriented in the second
step since A ∈ FB\FR; if A∗→ B is oriented by the second step, then B → R is also oriented
by the second step, in both of cases there is not B ◦−◦ R after the first two steps. Hence R1 is not
triggered in the third step.

Then we consider that a circle edge is oriented byR2. Suppose there is A→ B∗→ R or A∗→ B →
R, and A ◦−◦ R. We consider the cases: (i) the arrowhead at R on the edge connecting B and R
appears in Mi; (ii) the arrowhead at R on the edge connecting B and R is introduced by the first two
steps of Alg. 1 to obtain Mi+1 based on Mi and the local BK of X dictated by C.

(i) For the first case, there is B∗→ R and A ◦−◦R in Mi. According to the balanced property of Mi,
there is A←∗B in Mi. Hence the only case thatR2 is triggered is that there is A↔ B → R ◦−◦A
after the first two steps, in which case there can only be A←◦B in Mi due to the balance property.
In this case, A ←◦B is transformed to A ↔ B in only the first step. It implies that A ∈ C and
B ∈ PossDe(X,Mi[−C]). If R ∈ C, there is B ↔ R oriented in the first step, contradicting with
B → R after the first two steps. If R 6∈ C, since there is B ∈ PossDe(X,Mi[−C]) and B → R or
B ◦−∗ R in Mi, there is B ∈ PossDe(X,Mi[−C]), thus there is A∗→ R oriented in the first step,
contradicting with A ◦−◦R after the first two steps. Hence case (i) is impossible.

(ii) For the second case, note in the first two steps of Alg. 1 we only add arrowheads at the vertex in
PossDe(X,Mi[−C]), there is thus R ∈ PossDe(X,Mi[−C]). In this case there is A 6∈ C, otherwise
A∗→ R is oriented by the first step, contradiction. Due to R ∈ PossDe(X,Mi[−C]) and A ◦−◦R in
Mi, there is A ∈ PossDe(X,Mi[−C]) according to Lemma 2. We discuss whether B ∈ C. (ii.1) If
B ∈ C, the only case thatR2 is triggered is that A↔ B → R in M̄i+1, which implies that there is
A∗→ B and B → R or B ◦−∗ R in Mi. If B → R in Mi, according to the closed property of Mi

underR1, there is A∗→ R in Mi, thus there is A∗→ R in M̄i+1, contradiction. If A∗→ B ◦−∗R in
Mi, according to the balanced property of Mi, there is also A∗→ R in Mi, thus there is A∗→ R in
M̄i+1, contradiction. (ii.2) If B 6∈ C, if there exists an edge between A,B,R that is not a circle edge
in Mi, due to the balanced property of Mi and A ◦−◦R in Mi, there can be either A∗→ B ←∗R or
A←∗B∗→ R in Mi. We just show the proof for the first case, and that for the other one is similar.
If the case in R2 happens, there can only be A → B ↔ R in M̄i+1. Since we never add a new
bi-directed edge between PossDe(X,Mi[−C]) in Alg. 1, the edge B ↔ R is in Mi. However, in
this case due to balanced property of Mi and A ◦−◦R in Mi, there is A↔ B in Mi, contradicting
with A→ B in M̄i+1. Hence in Mi there can only be A ◦−◦B ◦−◦R ◦−◦A. Note the edge between
PossDe(X,P[−C]) is oriented in only the second step of Alg. 1, where we transform circle edges
to directed edges, hence there is A → B → R in M̄i+1. Then we will prove the impossibility of
A→ B → R ◦−◦ A in M̄i+1. According to Lemma 7 and Lemma 11, if A→ B → R is oriented,
then there is FA ⊇ FB ⊇ FR. If there is FA ⊃ FB or FB ⊃ FR, then there is FA ⊃ FR, hence
there is A→ R oriented by the second step of Alg. 1, contradiction. If there is FA = FB = FR, we
will prove its impossibility. According to Alg. 1, there is another vertex C ∈ PossDe(X,Mi[−C])
such that C → A is oriented by the second step of Alg. 1, C is not adjacent to B, and FC ⊇ FA.
Hence there is FC ⊇ FR. We can see that R must be adjacent to C, otherwise A → R will be
oriented to A→ R in the second step of Alg. 1. Due to Lemma 6, in each MAGM consistent to Mi

and C, there is C → A → B → R, hence there can only be C → R inM. In this case there is a
new unshielded collider C → R← B inM relative to Mi because there is B ◦−◦R in Mi, hence
M is not consistent to P . Hence there does not exist an MAG consistent to Mi and C. Due to the
correctness of local BK, there does not exist an MAG consistent to Mi, contradicting with Lemma 8.
With (i) and (ii), it is concluded thatR2 is not triggered in the third step of Alg. 1. Combining the
parts above, we conclude that for the first edge in the third step that is transformed from A←◦R to
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A↔ R or transformed from a circle edge to a directed or bi-directed edge cannot be a circle edge,
the first edge cannot be a circle edge.

Combining the two parts above, we conclude that for the first edge in the third step that is transformed
from A ←◦R to A ↔ R or transformed from a circle edge to a directed or bi-directed edge, the
first edge can be neither an edge transformed from A←◦R to A↔ R, nor a circle edge. Hence we
conclude there cannot be an edge in the third step that is transformed from A ←◦R to A ↔ R or
transformed from a circle edge to a directed or bi-directed edge. Hence, in the third step of Alg. 1,
only the transformation as A←◦R to A← R is possibly triggered by the orientation rules.

Lemma 13. The PMG Mi+1 in Thm. 1 satisfies the chordal property.

Proof. We denote the oriented graph based on Mi and the local BK dictated by C after the first two
steps of Alg. 1 by M̄i+1. As shown by Lemma 12, there are no circle edges oriented in the third step
of Alg. 1. Hence, it suffices to prove that the circle component in M̄i+1 is chordal.

Note the edges in M̄i+1[−PossDe(X,Mi[−C])] are identical to those in Mi[−PossDe(X,Mi[−C])]
since we do not orient the edges in this region in the first two steps. Due to chordal prop-
erty of Mi and the fact that the subgraph of a chordal graph is also chordal, the circle com-
ponent in M̄i+1[−PossDe(X,Mi[−C])] is chordal. We consider the circle edge connecting
M̄i+1[PossDe(X,Mi[−C])] and M̄i+1[−PossDe(X,Mi[−C])]. Suppose an edge of V1 ◦−◦ V2,
where V1 ∈ PossDe(X,Mi[−C]) and V2 ∈ V(Mi)\PossDe(X,Mi[−C]). If there is V2 6∈ C, then
there is V2 ∈ PossDe(X,Mi[−C]) due to V1 ∈ PossDe(X,Mi[−C]), V1 ◦−◦ V2, and Lemma 2,
contradicting with V2 ∈ V(Mi)\PossDe(X,Mi[−C]). Hence there is V2 ∈ C. According to the
first step of Alg. 1, V1 ◦−◦ V2 is oriented as V1 ←◦V2. Hence after the first step there is not circle
edge connecting M̄i+1[PossDe(X,Mi[−C])] and M̄i+1[−PossDe(X,Mi[−C])]. There are not cir-
cle edges connecting X with any other vertices in M̄i+1 since the marks at X is definite after the first
step. In the following, it suffices to show the circle component in M̄i+1[PossDe(X,Mi[−C])\{X}]
is chordal. For simplicity, we denote M̄i+1[PossDe(X,Mi[−C])\{X}] by M̄1

i+1.

We will use three facts in the following: (i) each circle edge in M̄i+1 is also a circle edge in Mi; (ii)
the circle edges in Mi[PossDe(X,Mi[−C])\{X}] are only possibly oriented in the second step in
the process of obtaining M̄i+1 from Mi by the first two steps of Alg. 1; (iii) Lemma 11.

Suppose the circle component in M̄1
i+1 is not chordal, there is a circle cycle as V0 ◦−◦ V1 ◦−◦ · · · ◦−◦

Vn ◦−◦ V0, n ≥ 3, where there is not a circle edge between every two unconsecutive vertices. And
there must exist edges between the unconsecutive vertices in this cycle, otherwise it is a cycle of
length four or more without a chord in Mi, contradicting with the chordal property of Mi. We can
always find a sub-structure Vk ◦−◦Vk+1 ◦−◦ · · · ◦−◦Vm ← Vk, 0 ≤ k < m ≤ n without other directed
edges between any two vertices among Vk, · · · , Vm except for Vm ← Vk (if there is another directed
edge, for instance Vk+1 → Vm, we can find a proper sub-structure Vk+1 ◦−◦ · · · ◦−◦ Vm ← Vk+1

instead. And since the path is symmetric, suppose Vk → Vm without loss of generality.). According
to Lemma 3, the directed edge between Vk and Vm can only be a circle edge in Mi. Hence in Mi

there is Vk ◦−◦ Vk+1 ◦−◦ · · · ◦−◦ Vm ◦−◦ Vk. Since the circle component in Mi in chordal, the
length of the circle cycle can only be three. Hence it holds m = k + 2 and there is a sub-structure
Vk ◦−◦ Vk+1 ◦−◦ Vk+2 ← Vk in M̄1

i+1. Next, we will prove its impossibility.

Since there is Vk ◦−◦ Vk+1 ◦−◦ Vk+2 ← Vk in M̄1
i+1, there is FVk

= FVk+1
= FVk+2

. Considering it
is oriented as Vk → Vk+2 in the second step, there is another vertex F1 in M̄1

i+1 such that there is
F1 → Vk where F1 is not adjacent to Vk+2. Evidently F1 is adjacent to Vk+1, otherwise Vk → Vk+1

is also oriented. Next, we consider the relation between FF1
and FVk

. Since F1 → Vk, there is
FVk
⊆ FF1

(Note F1 → Vk is oriented in the second step, if FVk
⊃ FF1

, there can be an another
edge oriented as Vk → F1 in the second step, contradicting with Lemma 11). If FVk

⊂ FF1
, there

is also FVk+1
⊂ FF1

since FVk
= FVk+1

. Hence F1 → Vk+1. And due to FVk+1
= FVk+2

and
the non-adjacency of F1 and Vk+2, in the second step Vk+1 → Vk+2 is oriented, contradicting with
Vk+1 ◦−◦ Vk+2. Hence, it is only possible that there is FVk

= FF1 and F1 ◦−◦ Vk+1 in M̄1
i+1. Here

we find a sub-structure F1 ◦−◦ Vk+1 ◦−◦ Vk ← F1. Since F1 → Vk is oriented, there is another vertex
F2 that is not adjacent to Vk in M̄1

i+1 such that F2 → F1 is oriented in the second step. Similar to
the previous proof, there is not a contradiction only when FF2 = FF1 and F2 ◦−◦ Vk+1. Repeat
this process and we can conclude that if there is not a contradiction, in any uncovered directed
path as Ft → · · · → F1 → Vk → Vk+2, for any a vertex V ′ on the path, there is FV ′ = FVk

and
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there is a circle edge between V ′ and Vk+1. It contradicts with Lemma 7. Hence, there cannot be a
sub-structure as Vk ◦−◦ Vk+1 ◦−◦ Vk+2 ← Vk after the first three steps. The proof completes.

Lemma 14. The PMG Mi+1 in Thm. 1 satisfies the balanced property.

Proof. If there is Vi∗→ Vj ◦−∗ Vk, we first prove that Vi is adjacent to Vk. Suppose Vi is not adjacent
to Vk. This structure cannot appear in Mi due to the complete property of Mi. Hence Vi∗→ Vj is
oriented in the process of obtaining Mi+1 based on Mi. According to Lemma 12, the arrowhead
is introduced in only the first two steps of obtaining Mi+1. And in the first two steps arrowhead is
added at the vertex in PossDe(X,Mi[−C]). Hence there is Vj ∈ PossDe(X,Mi[−C]). In this case
if Vk ∈ C, there is Vj ←∗Vk oriented in the first step, contradiction. If Vk 6∈ C, if there is Vj ◦−◦ Vk
in Mi, there is Vk ∈ PossDe(X,Mi[−C]), thus there is always Vj → Vk oriented in the second step
by discussing whether Vi ∈ C (we omit the details), contradiction. If Vj◦→ Vk in Mi, it will be
oriented as Vj → Vk byR1 in the third step of Alg. 1, which contradict with Vj ◦−∗ Vk in Mi+1.

Next we consider the case that Vi is adjacent to Vk. If there is Vi∗→ Vj ◦−∗ Vk in Mi, there is
Vi∗→ Vk due to the balanced property of Mi, hence there is Vi∗→ Vk in Mi+1. Hence it suffices
to consider there is Vi ∗−◦ Vj ◦−∗ Vk in Mi while Vi∗→ Vj ◦−∗ Vk in Mi+1. Note in the process
of obtaining Mi+1 based on Mi, arrowhead are oriented only at the vertex in PossDe(X,Mi[−C]),
thereby Vj ∈ PossDe(X,Mi[−C]). In addition, Vk 6∈ C, otherwise there is Vj ←∗Vk in Mi+1.
Combining Vj ◦−∗ Vk and Vj ∈ PossDe(X,Mi[−C]), there is Vk ∈ PossDe(X,Mi[−C]). We
discuss whether Vi ∈ C in the following.

(i). If Vi ∈ C, there is Vi∗→ Vj and Vi∗→ Vk after the first step of obtaining Mi+1 based on Mi.
In this case, when there is Vi → Vj in Mi+1, there is Vi ◦−◦ Vj in Mi, hence there is Vi ◦−∗ Vk or
Vi → Vk in Mi (if there is Vi ←∗Vk ◦−∗ Vj ◦−∗ Vi in Mi, it contradicts with the balanced property of
Mi). Therefore there is Vi → Vk in Mi+1. Balanced property is satisfied for Mi+1 when Vi ∈ C.

(ii). If Vi 6∈ C, there is Vi ∈ PossDe(X,Mi[−C]) due to Vi ∗−◦ Vj and Vj ∈ PossDe(X,Mi[−C]).
In this case the arrowhead is introduced in the second step of obtaining Mi+1 based on Mi. Hence
there is Vi ◦−◦ Vj in Mi. In this case either Vi ◦−◦ Vj∗→ Vk ←∗Vi, or Vi ◦−◦ Vj ◦−◦ Vk ◦−◦ Vi in Mi.
For the former case, there is Vi → Vj∗→ Vk ←∗Vi in Mi+1. And there cannot be Vi ↔ Vk in Mi+1,
otherwise there is Vj ↔ Vk since Mi+1 is closed under R2, contradicting with Vj ◦−∗ Vk in Mi+1.
Hence the balanced property also holds in Mi+1 for the first case. For the latter case, suppose there
is Vi → Vj ◦−◦ Vk oriented after the second step, Vi is adjacent to Vk. According to the proof of
Lemma 13, there cannot be a structure Vi ◦−◦ Vk ◦−◦ Vj ← Vi, thus there is not a circle-edge between
Vi and Vk. Since we only transform the circle edges between PossDe(X,Mi[−C]) to directed edges
in the second step, the edge between Vi and Vk is directed. If there is Vi → Vk oriented in the second
step, balanced property of Mi+1 is satisfied. If there is Vk → Vi oriented in the second step, there is
Vk → Vj oriented byR2 in the third step, which contradicts with Lemma 12 that there are no circle
edges oriented in the third step, impossibility.

As shown above, balanced property also holds in Mi+1.

Lemma 15. The PMG Mi+1 in Thm. 1 satisfies the complete property.

In Mi+1, the edges with circles are either A ◦−◦B or A◦→ B. In Lemma 15.1, we show that we can
always obtain an MAG consistent to P and local BK regarding V1, · · · , Vi+1 by transforming ◦→ to
→ and the circle component into a DAG without unshielded colliders in Mi+1. Due to the chordal
property of Mi+1, for the edge A ◦−◦B in Mi+1, there exist both perfect elimination orders to orient
the circle component into DAGs without unshielded colliders where there is A → B and A ← B
respectively, as implied by Lemma 5 of Meek [36]; and for the edge C◦→ D in Mi+1, the edge can
be oriented as C → D in some MAG consistent to P and local BK regarding V1, · · · , Vi+1. For
the edge A◦→ B in Mi+1, we show the edge can be oriented as A↔ B in Lemma 15.2. Here the
most difficult part is to prove Lemma 15.1, i.e., we can always obtain an MAG consistent to P and
local BK regarding V1, · · · , Vi+1 by transforming ◦→ to→ and the circle component into a DAG
without unshielded colliders in Mi+1. With this result, we can prove Lemma 15.2 totally following
the procedure of that of Theorem 3 of Zhang [35], with the invariant, chordal, and balanced property
of Mi+1. Since the proof is too lengthy and completely follow that of Theorem 3 of Zhang [35], we
will not show the details but just a sketch in the proof of Lemma 15.2.

Note according to the invariant property of Mi+1, there cannot be new unshielded colliders or directed
or almost directed cycles introduced in Mi+1 relative to Mi, otherwise there does not exist an MAG
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consistent to Mi+1. Given the invariant property of Mi+1 by Lemma 6 and the basic assumption
that the background knowledge is correct, there is not an MAG consistent to Mi, contradicting with
Lemma 8.

Lemma 15.1. Consider Mi+1 in Thm. 1. We orient a graph H from Mi+1 by transforming ◦→ to
→ and the circle component in Mi+1 into a DAG without unshielded colliders. ThenH is an MAG
consistent to P and local BK regarding V1, · · · , Vi+1.

Proof. Our proof idea is as follows. We aim to prove if the constructed graph H by the following
orientation process based on Mi+1 which transforms all edges ◦→ to → and orient the circle
component into a DAG without unshielded colliders is not an MAG consistent to P and local BK
regarding V1, · · · , Vi+1, then a constructed graph based on Mi which transform all edges ◦→ to→
and orient the circle component into a DAG without unshielded colliders is not an MAG consistent
to P and local BK regarding V1, · · · , Vi. Repeat this process until M0 and we can conclude that a
constructed graph based on M0(= P) which transforms all edges ◦→ to→ and orient the circle
component into a DAG without unshielded colliders is not an MAG consistent to M0(= P), which
contradicts Theorem 2 of Zhang [35]. Hence we get the desired result. The process of obtainingH is
as follows.

(Step 1) For all K ∈ PossDe(X,Mi[−C]) and ∀T ∈ C such that K ◦−∗T in Mi, orient K ←∗T (the
mark at T remains); for all K ∈ PossDe(X,Mi[−C]) such that X ◦−∗K, orient X → K;

(Step 2) Orient the subgraph Mi[PossDe(X,Mi[−C])\{X}] as follows until no feasible updates:
for any two vertices Vi and Vj such that Vi ◦−◦ Vj , orient it as Vi → Vj if (i) FVi

\FVj
6= ∅

or (ii) FVi = FVj as well as there is a vertex Vk ∈ PossDe(X,Mi[−C])\{X} not adjacent
to Vj such that Vk → Vi ◦−◦ Vj , where FVl

= {V ∈ C ∪ {X} | V ∗−◦ Vl in Mi};

(Step 3) Obtain Mi+1 by applying the orientation rules until the graph is closed under the rules;

(Step 4) for the circle component in subgraph Mi+1[PossDe(X,Mi[−C])\{X}], orient it into a
DAG without new unshielded colliders;

(Step 5) for the circle component in subgraph Mi+1[−PossDe(X,Mi[−C])], orient it into a DAG
without new unshielded colliders;

(Step 6) for any edge as ◦→, orient it as→.

Note the first three steps are the process of obtaining Mi+1 from Mi with the local structure of X
dictated by C. And in Step 4 - Step 6 we transform the edges as ◦→ to→ and transform the circle
component in Mi+1 into a DAG without new unshielded colliders. Note X is not in a connected
circle component with any other vertices after the first step. Hence when we consider the circle
component in Mi+1, we do not need to consider X . And we have proven that there is not a circle
edge connecting PossDe(X,Mi[−C])\{X} and V(Mi)\(PossDe(X,Mi[−C])\{X}) in the proof
of Lemma 13. Hence the circle component in Mi+1[PossDe(X,Mi[−C])\{X}] is not connected to
that in Mi+1[−(PossDe(X,Mi[−C])\{X})]. Hence we can divide the circle component orientation
in Mi+1 into Step 4 and Step 5. The achievability of Step 4 and Step 5 is due to the chordal property
of Mi+1 according to Lemma 13.

In the following there are mainly two parts. The first part is that we construct an auxiliary graph
H0 based onH, and we show that this constructed graph can also be seen as a graph obtained from
Mi by transforming all edges ◦→ to→ and orienting the circle component into a DAG without new
unshielded colliders. The second part is we show that ifH0 is an MAG consistent to P and local BK
regarding V1, · · · , Vi, thenH is an MAG consistent to P and local BK regarding V1, · · · , Vi+1.

(A) Auxiliary graph H0. We construct an auxiliary graph H0 based on H by transforming all
and only the bi-directed edges K ↔ T in Mi+1 which are K◦→ T in Mi to K → T , where
K ∈ PossDe(X,Mi[−C]) and T ∈ C according to the first step. It is direct that H0 has the
non-circle marks in Mi and there are no new bi-directed edges in H0 compared to Mi because all
additional bi-directed edges inH relative to Mi are possibly introduced in only the first step of the
process of obtainingH according to the construction process and Lemma 12. Besides, all the circles
on ◦→ edges in Mi are oriented as tails inH0. In the following it suffices to show thatH0 is also a
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graph oriented from Mi by orienting the circle component in Mi into a DAG without new unshielded
colliders.

Hence, we only consider the circle component in Mi. We divide it into two parts, one is the circle
component in Mi[PossDe(X,Mi[−C])\{X}], denoted by CC1; and the other is the circle component
in Mi[−(PossDe(X,Mi[−C])\{X})], denoted by CC2.

Note the oriented edges of CC1 inH0 totally follows those inH, which are oriented by either Step 2
or Step 4. There are no new unshielded colliders or directed or almost directed cycles oriented in the
edges of CC1 by the three following facts. (1). There are no new unshielded colliders or directed
or almost directed cycles in the edges of CC1 oriented by Step 2. Otherwise, given the invariant
property of Mi+1 by Lemma 6 and the basic assumption that the background knowledge is correct,
there is not an MAG consistent to Mi, contradicting with Lemma 8. (2). There are no unshielded
colliders or directed or almost directed cycles in the edges of CC1 oriented by Step 4 because the
circle component in Mi+1 is chordal and is oriented to a DAG without new unshielded colliders.
(3). There are no new unshielded colliders or directed or almost directed cycles in edges of CC1

oriented by both Step 2 and Step 4 due to the balanced property of Mi+1 and the impossibility of the
transformation of circle edges to bi-directed edges.

Note the edges in CC2 also totally follow those inH. Although when X◦→ T in Mi where T ∈ C,
there is X ↔ T in H while X → T , such edge is not in the circle component CC2 because it is
as X◦→ T in Mi. According to the orientation process, the sub circle component of CC2 induced
by V(CC2)\{X}, is oriented into a DAG without new unshielded colliders. Hence if there are new
unshielded colliders or directed or almost directed cycles in edges of CC2, they contain X . (1) There
are not new unshielded colliders as A∗→ X ←∗B in edges of CC2 in Step 2. Otherwise, given the
invariant property of Mi+1 by Lemma 6 and the basic assumption that the background knowledge is
correct, there is not an MAG consistent to Mi, contradicting with Lemma 8. (2) There are no directed
or almost directed cycles in CC2 containing X because for each vertex V in CC2 that has a circle
edge with X , the edge is oriented as V → X .

For the circle edge in the circle component connecting K ∈ PossDe(X,Mi[−C])\{X} and
T ∈ V(Mi)\(PossDe(X,Mi[−C])\{X}), there must be T ∈ C ∪ {X}, otherwise there is
T ∈ PossDe(X,Mi[−C])\{X} due to K ∈ PossDe(X,Mi[−C])\{X} and K ◦−◦ T . Hence
in H the circle edge is oriented as K ← T by the first step and the last step. According to the
relation between H and H0, there is K ← T in H0. Hence, for each circle edge K ◦−◦ T where
K ∈ PossDe(X,Mi[−C])\{X} and T ∈ V(Mi)\(PossDe(X,Mi[−C])\{X}), there is K ← T in
H0 and T ∈ C∪{X}. Hence it is evident that inH0 there cannot be a directed or almost directed cy-
cles oriented from the circle component which contain both the vertices in PossDe(X,Mi[−C])\{X}
and V(Mi)\(PossDe(X,Mi[−C])\{X}). If there is a new unshielded collider inH0 relative to Mi

comprised of the vertices in both PossDe(X,Mi[−C])\{X} and V\(PossDe(X,Mi[−C])\{X}),
the unshielded collider can only be as T1 → K1 ← T2 or T1 → K1 ← K2 where T1, T2 ∈ C∪{X}
and K1,K2 ∈ PossDe(X,Mi[−C])\{X}. We first prove that the first case is impossible. Due to
Lemma 6, there is T1∗→ K1 and T2∗→ K2 in all MAGs consistent to P and the local BK regarding
V1, . . . , Vi+1. If they form a new unshielded collider, it implies that there does not exist MAG
consistent to P and the local BK regarding V1, . . . , Vi+1. Due to the correctness of BK and Lemma 6,
there does not exist an MAG consistent to Mi, contradicting with Lemma 8. For the second case,
there is T1 ∈ FK1

\FK2
, hence K1 → K2 should be oriented in the second step. While there is also

K1 ← K2 oriented, it contradicts with Lemma 11. Hence, if there is a new unshielded collider inH0,
there is always a contradiction.

Hence, we prove that the graphH0 constructed based onH can also be seen as a graph obtained from
Mi by transforming all edges ◦→ to→ and transforming the circle component into a DAG without
new unshielded colliders.

(B) If H0 is an MAG consistent to P and local BK regarding V1, · · · , Vi, then H is an MAG
consistent to P and local BK regarding V1, · · · , Vi+1. Suppose H0 is an MAG consistent to P
and local BK regarding V1, · · · , Vi. We will prove thatH is an MAG Markov equivalent toH0 by
Lemma 1 of Zhang and Spirtes [41]. BecauseH has the non-circle marks in Mi+1, andH0 belongs
to the MEC represented by P , we can conclude that H is an MAG consistent to P and local BK
regarding V1, · · · , Vi+1.
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Note that the only difference betweenH andH0 is that for ∀K ∈ PossDe(X,Mi[−C]) and ∀T ∈ C
such that K◦→ T in Mi, there is K → T inH0 but K ↔ T inH. Denote the set of different edges
in H0 by Edge(H0) = {K → T inH0 | K ∈ PossDe(X,Mi[−C]), T ∈ C,K◦→ T in Mi}. We
could obtainH fromH0 by transforming these edges to bi-directed edges. We transform one edge
one time. At first, we select the edge K → T in Edge(H0) according to the selection criterion
that (1) we select K that is not an ancestor of any other V1 such that there is an edge V1 → V2 in
Edge(H0); and (2) given K selected in the first step, we select T that is not a descendant of any
other V2 such that there is an edge K → V2 in Edge(H0). Then we obtain Edge(H1) by deleting
K → T from Edge(H0). By such operation, we obtain a new graphH1 and Edge(H1). Repeat the
process above and we could obtain a series of graphsH0,H1, · · · ,Hm,Hm+1(= H). We will prove
that for any Hj and Hj+1, where 0 ≤ j ≤ m, if Hj is an MAG, then Hj+1 is an MAG Markov
equivalent toHj . According to the conditions,H0 is an MAG in the MEC represented by P . Suppose
the edge that will be transformed inHj is K → T . According to Lemma 1 of Zhang and Spirtes [41],
givenHj is an MAG, it suffices to show that (1) there is no directed path from K to T inHj other
than K → T ; (2) for any A → K in Hj , A → T is also in Hj ; and for any B ↔ K in Hj , either
B → T or B ↔ T is in Hj ; (3) there is no discriminating path for K on which T is the endpoint
adjacent to K inHj . We show the proof in order.

(1) In this part, we prove that there is not a directed path from K to T in Hj . For the sake of
contradiction, suppose there is a directed path from K to T inHj , we suppose the minimal directed
path of this path is K(= F0) → F1 → · · · → Fm → T (= Fm+1). Since we only transform
directed edges to bi-directed edges in the process, the directed path is also in H0. We first prove
that there must be a vertex Fn, 1 ≤ n ≤ m such that Fn ∈ C. Otherwise, all of F1, · · · , Fm

belong to PossDe(X,Mi[−C]) since F0 ∈ PossDe(X,Mi[−C]) and there is a possible directed path
comprised of F0, F1, · · · , Fm in Mi. (i.) If there is Fm → T in Mi, it contradicts with Lemma 10.
(ii.) If there is Fm ◦−◦ T in Mi, according to the first step of orientation procedure to construct H,
there is Fm ← T in H. Since in the process from Hj to H we never transform an edge A→ B to
A← B, there cannot be an edge Fm → T inHj . (iii.) If there is Fm◦→ T in Mi, there is Fm → T
inH0. According to the edge selection criterion, when there is both Fm → T and K → T inHj , we
should transform Fm → T ahead of K → T due to K → F1 → · · · → Fm, contradiction. For the
other situations for the edge between Fm and T in Mi, there cannot form an edge Fm → T in Hj .
Hence we conclude there is a vertex Fn, 1 ≤ n ≤ m such that Fn ∈ C.

Without loss of generality, we suppose Fn ∈ C and Fl 6∈ C,∀1 ≤ l ≤ n − 1. We first prove
there is not a vertex Fl, 1 ≤ l ≤ n − 1 adjacent to T . If there is, since Fl → · · · → Fm → T
in H0, there is Fl → T in H0 due to the ancestral property. In this case there is a directed path
F1 → · · ·Fl → T without vertices in C inH0, which implies that there is a possible directed path
where the sub-path from F1 to Fl is minimal and any variables on the path do not belong to C,
contradicting the result we prove above. Hence Fl cannot be adjacent to T for ∀1 ≤ l ≤ n − 1.
(i.) If n ≥ 2, (i.a.) if there Fn ◦−∗ T or Fn → T in Mi, there is an uncovered possible directed
path comprised of K,F1, · · · , Fn, T in Mi where F1 is not adjacent to T . In this case K◦→ T has
been oriented as K → T in Mi byR9 of Zhang [35] due to Mi is closed under the orientation rules,
contradiction. (i.b.) If there is Fn ←∗T in Mi, note the non-adjacency of T and Fn−1. Due to the
edge T∗→ Fn and the complete property of Mi, the mark at Fn on the edge between Fn−1 and
Fn is identifiable in Mi. And due to the possible directed path, there is Fn−1 → Fn in H0, there
can only be Fn−1 → Fn or Fn−1◦→ Fn in Mi. The former case contradicts with Lemma 10 due
to Fn−1 ∈ PossDe(X,Mi[−C]) and Fn ∈ C. For the latter case, the edge Fn−1 → Fn should be
transformed to bi-directed edge ahead of K → T , hence there cannot be an edge Fn−1 → Fn inHj ,
contradiction. (ii.) If n = 1, there is K → T ′ → T inH, where T ′ ∈ C. In this case if there is not
K◦→ T ′ in Mi, there cannot be an edge K → T ′ in Hj ; if there is K◦→ T ′ in Mi, there is thus
both K → T ′ and K → T in H0, K◦→ T ′ is transformed to a bi-directed edge ahead of K → T
due to T ′ → T , thereby there is not an edge K → T ′ inHj . Hence there cannot be a sub-structure
K → T ′ → T inHj , contradiction. Hence, there is always a contradiction if there is a directed path
from K to T inHj .

(2) In this part, we prove that if there is an edge A → K in Hj , there is A → T in Hj ; if there
is B ↔ K in Hj , either B → T or B ↔ T is in Hj . Note there is K◦→ T in Mi, where
K ∈ PossDe(X,Mi[−C]) and T ∈ C.

It suffices to show that for vertex A such that A→ K or A↔ K in Hj , A is adjacent to T . Then
according to the ancestral property ofHi, we directly get the desired result due to K → T inHj .
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We discuss the possible cases of the edge between A and K in Mi. If there is A∗→ K in Mi, due to
the circle at K on the edge of K and T and the closed property of Mi, A is adjacent to T . Hence the
result evidently holds.

If there is A ◦−◦K in Mi, we discuss whether A ∈ C. If not, then A ∈ PossDe(X,Mi[−C]) due
to K ∈ PossDe(X,Mi[−C]). Suppose T is not adjacent to A, we will prove its impossibility. In
this case, we orient K → A in the second step due to T ∈ FK\FA, there is thus K → A in H0.
Considering we do not transform→ to← in the whole procedure, there cannot be an edge A→ K in
Hj . And since only the directed edge connecting a vertex in C and a vertex in PossDe(X,Mi[−C])
is possibly converted to a bi-directed edge in the process from H0 to Hj , A ← K is also not
transformed to A ↔ K due to A,K ∈ PossDe(X,Mi[−C]), so that A ↔ K cannot be in Hj .
Hence when A ◦−◦K in Mi and A 6∈ C, there is not an edge A→ K or A↔ K inHj . If A ∈ C,
A is adjacent to T due to T ∈ C and Lemma 9. Hence the result holds when A ∈ C. We conclude
that if there is A ◦−◦K in Mi, the result holds.

If there is A←◦K in Mi, there is A← K inH0. Since we do not add an arrowhead at a vertex in C
in the process of obtainingH from H0, and only the directed edge connecting a vertex in C and a
vertex in PossDe(X,Mi[−C]) is possibly converted to a bi-directed edge in the process fromH0 to
Hj , we only need to consider there is A↔ K inHj , where A ∈ C. In this case, A is adjacent to T
by Lemma 9. The result holds.

For the other cases for the edge between A and K in Mi except for A∗→ K, A ◦−◦K, and A←◦K,
there cannot be an edge as A→ K or A↔ K inHj . We thus have considered all the possible cases
and conclude that if there is an edge A→ K inHj , there is A→ T inHj ; if there is A↔ K inHj ,
either A→ T or A↔ T is inHj according to the balanced property.

(3) In this part, we prove that there is no discriminating path for K on which T is the endpoint
adjacent to K inHj . The proof of this part refers to the proof of (T3) of Theorem 3 by Zhang [35],
with modifications due to the additional background knowledge.

Suppose a path p = (V0, V1, · · · , Vn = K,T ) which is a discriminating path for K. Without loss
of generality, suppose p is the shortest path. According to the construction of Edge(H0), there is
K◦→ T in Mi+1. We derive a contradiction by showing that p is already a discriminating path in
Mi. Hence there cannot be an edge K◦→ T in Mi, otherwise if i ≥ 1 it will be oriented as K → T
byR′4 or if i = 0 it will be oriented as K → T or K ↔ T byR4 due to the closed property of Mi.
There is Vn−1 ↔ K inHj , for otherwise there would be a directed path K → Vn−1 → T from K
to T other than the edge K → T in Hj . It follows that every edge on the subpath from V1 to K is
bi-directed inHj .

Next we will prove that there is an edge V0∗→ V1 in Mi. Suppose for contradiction, the edge is either
V0 ◦−◦ V1 or V0 ←◦V1.

(i). Suppose V0 ◦−◦ V1 in Mi. There cannot be an edge V1 ↔ V2 in Mi, for otherwise there is
V0 ↔ V2 in Mi by balanced property of Mi, which contradicts with the shortest discriminating
path p. Since we do not transform a circle edge in Mi to a bi-directed edge, the edge between V1
and V2 are either V1◦→ V2 or V1 ←◦V2. For the former case, V0 is adjacent to V2, for otherwise
V0∗→ V1 ←∗V2 is identifiable in P and Mi since V0∗→ V1 ↔ V2 inHj andHj is an MAG Markov
equivalent toH0 which belongs to the MEC represented by P , contradicting with V0 ◦−◦ V1 in Mi.
According to the balanced property of Mi, there is V0∗→ V2 in Mi thus there is V0∗→ V2 in Hj ,
in which case there is a shorter discriminating path without V1, contradiction. For the latter case,
there is V0 ◦−◦ V1 ←◦V2 in Mi. As shown by the orientation procedure, we only add an arrowhead
at the vertex in PossDe(X,Mi[−C]), and we never orient an edge as bi-directed edge in an edge
connecting two vertices from PossDe(X,Mi[−C]), hence V0∗→ V1 and V1 ↔ V2 cannot be oriented
at the same time in the process of obtainingH fromH0.

(ii). Suppose V0 ←◦V1. Due to the fact that a bi-directed edge is oriented inHj compared to Mi only
if the edge connects a vertex in PossDe(X,Mi[−C]) and a vertex in C, and the fact that an arrowhead
is added only at the vertex in PossDe(X,Mi[−C]), there is V0 ∈ C and V1 ∈ PossDe(X,Mi[−C]).
And due to T ∈ C and the non-adjacency of T and V0, there is a contradiction with the condition
that Mi[C] is complete in Lemma 9.

We conclude there is V0∗→ V1 in Mi. The remaining part is to prove by induction that for every
1 ≤ i ≤ n − 1, Vi is a collider and a parent of T in Mi. V1 → T is evident due to the non-
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adjacency of V0 and T . Note T ∈ C and V1 → T in Mi, thus V1 6∈ PossDe(X,Mi[−C]) due to
PossDe(X,Mi[−C]) ∩ Pa(C,Mi) = ∅ as Lemma 10. There cannot be an edge V1 → V2 in Mi

because the edge cannot be oriented as V1 ↔ V2 inHj . If there is not a collider at V1 in Mi, there
is V1◦→ V2. We orient it to bi-directed edges only if V1 ∈ PossDe(X,Mi[−C]), contradiction.
Hence the collider is identifiable in Mi. Similarly, we could prove V2 → T in Mi. Due to T ∈ C
and PossDe(X,Mi[−C]) ∩ Pa(C,Mi) = ∅, V2 6∈ PossDe(X,Mi[−C]), thus V1 ↔ V2 ←∗V3 is
identifiable in Mi since arrowhead is added at only the vertex in PossDe(X,Mi[−C]). By such way,
we prove that the path is a discriminating path for K in Mi. Thus there cannot be an edge K◦→ T in
Mi, otherwise it will be oriented as K → T by R′4 if i ≥ 1 and oriented as K → T or K ↔ T if
i = 0 since Mi is closed under the orientation rules, contradicting with the fact that there is K◦→ T
in Mi+1.

Hence, we conclude that H is an MAG Markov equivalent to H0. It is evident that H has the
non-circle marks in Mi+1. SinceH0 belongs to the MEC represented by P ,H also belongs to the
MEC. We conclude thatH is an MAG consistent to P and the local BK regarding V1, · · · , Vi+1. The
proof in this part completes.

Hence, according to the result (A),H0 can be seen as an MAG obtained from Mi by transforming
◦→ to→ and the circle component into a DAG without new unshielded colliders in Mi. With the
inverse negative proposition of the result (B), if H is not an MAG consistent to P and the local
BK regarding V1, · · · , Vi+1, then H0 is not an MAG consistent to P and the local BK regarding
V1, · · · , Vi, which can be obtained from Mi−1 by transforming ◦→ to→ and the circle component
into a DAG without new unshielded colliders in Mi−1. Repeat the process above, we can conclude
that there is a graph obtained from P by transforming ◦→ to→ and the circle component into a DAG
without new unshielded colliders that is not MAG consistent to P , which contradicts with Theorem 2
of Zhang [35]. We get the desired result.

Lemma 15.2. Suppose there is an edge A◦→ B in the PMG Mi+1 in Thm. 1, then there is an MAG
M1 consistent to P and local BK regarding V1, · · · , Vi+1 with A↔ B.

Proof. This part totally follows Theorem 3 of Zhang [35] with the results we have proved before.
Hence we only show the sketch. We take Mi+1 as the PAFCI of Zhang [35]. Note we do not consider
selection bias in this paper. Hence the cases of P2,P3,P4 (Lemma A.2, Lemma A.4, Lemma A.5)
of Zhang [35] will not happen. And P1, i.e., the balanced property, has been proved to hold in
Mi+1 according to Lemma 14. With the balanced property, Lemma B.1-Lemma B.18 of Zhang [35],
which are sufficient to prove Theorem 3 of Zhang [35], also hold in Mi+1 because there are not
other conditions involved. As proved by Lemma 15.1, we prove that when we transform the ◦→
edges to→, and orient the circle component into a DAG without new unshielded colliders based
on Mi+1, we can always obtain an MAG consistent to P and local BK regarding V1, · · · , Vi+1. It
plays the roles of Theorem 2 of Zhang [35]. We can construct a graphH with A↔ B by the same
procedure of Theorem 3 of Zhang [35] and proveH is an MAG that is Markov equivalent to an MAG
H0 obtained from Mi+1 by transforming ◦→ edges to→ and transforming the circle component
in Mi+1 into a DAG DA◦→B defined in Theorem 3. According to Lemma 15.1, H0 is an MAG in
the MEC represented by P . Hence H is an MAG in the MEC represented by P . And since H has
the non-circle edges in Mi+1, H is an MAG with A ↔ B consistent to P and local BK regarding
V1, · · · , Vi+1.

Theorem 1. Given i, suppose Ms,∀s ∈ {0, 1, . . . , i} satisfies the five following properties:

(Closed) Ms is closed under the orientation rules.

(Invariant) The arrowheads and tails in Ms are invariant in all the MAGs consistent to P and BK
regarding V1, . . . , Vs.

(Chordal) The circle component in Ms is chordal.

(Balanced) For any three vertices A,B,C in Ms, if A∗→ B ◦−∗C, then there is an edge between
A and C with an arrowhead at C, namely, A∗→ C. Furthermore, if the edge between A and B is
A→ B, then the edge between A and C is either A→ C or A◦→ C (i.e., it is not A↔ C).

(Complete) For each circle at vertex A on any edge A◦−∗B in Ms, there exist MAGsM1 andM2

consistent to P and BK regarding V1, . . . , Vs with A←∗B ∈ E(M1) and A→ B ∈ E(M2).
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Then the PMG Mi+1 obtained from Mi with BK(Vi+1) by Alg. 1 also satisfies the five properties.

Proof. The closed, invariant, chordal, balanced, complete properties of Mi+1 are proved by
Lemma 5, 6, 13, 14, 15.
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